MAR - Motion For Animation And Robotics

The objectives of this module are: The module will rely on applications to illustrate different these techniques in robotics and animation

Agenda

For 2021/2022, the courses will be on Tuesdays at 2pm in room E208 in building B02B, and on Fridays at 8am in the same room E208 in building B02B. Please check the following agenda, as some slots have no courses. Of course depending on the Covid context, courses may be organised online (check Discord for updates)


Slides of the course


Course 1
Course 1 - Introduction
Course 2
Course 2 - Hierarchical Modelling
Course 2
Course 3 - Kinematics
Course 3
Course 4 - Motion Capture
Course 4
Course 5 - Editing Character Motion
Course 5
Course 6 - Motion Control
Course 5
Course 7 - Interactive Virtual Cinematography
Course 6, 7 and 8
Course 8, 9, 10 - Motion Planning
Course 9 and 10
Course 11 and 12 - Behavioral animation
Course 9 and 10
Course 13 - Camera Control

Research papers (among which to choose for paper presentation) - updated for 2021/2022



Crowd simulation



Paper #1: Guy, S. J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., & Manocha, D. (2010, July). Pledestrians: a least-effort approach to crowd simulation. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 119-128). Eurographics Association. LINK



Paper #2: Singh, S., Kapadia, M., Reinman, G., & Faloutsos, P. (2011). Footstep navigation for dynamic crowds. Computer Animation and Virtual Worlds, 22(2‐3), 151-158. LINK



Paper #3: Shao, W., & Terzopoulos, D. (2005, July). Autonomous pedestrians. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 19-28). ACM. LINK


Character animation




Paper #4: Victor Brian Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. 2005. Dynamic response for motion capture animation. ACM Trans. Graph. 24, 3 (July 2005), 697-701. DOI: https://doi.org/10.1145/1073204.1073249 LINK



Paper #5: Jing Wang and Bobby Bodenheimer. 2004. Computing the duration of motion transitions: an empirical approach. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '04). DOI: https://doi.org/10.1145/1028523.1028568 LINK



Paper #6: Rachel Heck and Michael Gleicher. 2007. Parametric motion graphs. In Proceedings of the 2007 symposium on Interactive 3D graphics and games (I3D '07). DOI=http://dx.doi.org/10.1145/1230100.1230123 LINK



Paper #7:Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis, Yeongho Seol, Seokpyo Hong, Haegwang Eom, Sunjin Jung, and Junyong Noh. 2016. SketchiMo: sketch-based motion editing for articulated characters. ACM Trans. Graph. 35, 4, Article 146 (July 2016), 12 pages. LINK



Paper #8:Eom, H., Choi, B., Cho, K., Jung, S., Hong, S. and Noh, J. (2020), Synthesizing Character Animation with Smoothly Decomposed Motion Layers. Computer Graphics Forum, 39: 595-606. LINK



Paper #9:Aristidou, A., Cohen-Or, D., Hodgins, J. K., Chrysanthou, Y., & Shamir, A. (2018). Deep motifs and motion signatures. ACM Transactions on Graphics (TOG), 37(6), 1-13. LINK



Paper #10:Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks for character control. ACM Trans. Graph. 36, 4, Article 42 (July 2017), 13 pages. LINK



Paper #11:Richard Kulpa, Franck Multon, Bruno Arnaldi. 2005. Morphology‐independent representation of motions for interactive human‐like animation. Computer Graphics Forum 24 (3), 343-351. LINK



Paper #12:Wanli Ma, Shihong Xia, Jessica K. Hodgins, Xiao Yang, Chunpeng Li, and Zhaoqi Wang. 2010. Modeling style and variation in human motion. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '10). Eurographics Association, Goslar, DEU, 21–30. LINK



Paper #13:Jianyuan Min and Jinxiang Chai. 2012. Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. 31, 6, Article 153 (November 2012), 12 pages. LINK



Paper #14:Hubert P. H. Shum, Taku Komura, Masashi Shiraishi, and Shuntaro Yamazaki. 2008. Interaction patches for multi-character animation. In ACM SIGGRAPH Asia 2008 papers (SIGGRAPH Asia '08). Association for Computing Machinery, New York, NY, USA, Article 114, 1–8. LINK



Paper #15: Peng, X. B., Ma, Z., Abbeel, P., Levine, S., & Kanazawa, A. (2021). AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control. arXiv preprint arXiv:2104.02180. LINK

Camera animation




Paper #15: Jackie Assa, Lior Wolf, Daniel Cohen-Or, The Virtual Director: A Correlation-Based Online Viewing of Human Motion, Computer Graphics Forum, Eurographics 2010 LINK



Paper #16: Thomas Oskam, Robert W. Sumner, Nils Thuerey, and Markus Gross. 2009. Visibility transition planning for dynamic camera control. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '09), Dieter Fellner and Stephen Spencer (Eds.). ACM, New York, NY, USA, 55-65. DOI=http://dx.doi.org/10.1145/1599470.1599478 LINK



Paper #17: Boubekeur, Tamy. "ShellCam: Interactive geometry-aware virtual camera control." Image Processing (ICIP), 2014 IEEE International Conference on. IEEE, 2014. LINK


Paper #18: Rogerio Bonatti, Wenshan Wang, Cherie Ho, Aayush Ahuja, Mirko Gschwindt, Efe Camci, Erdal Kayacan, Sanjiban Choudhury, and Sebastian Scherer. 2019. Autonomous aerial cinematography in unstructured environments with learned artistic decision-making. Journal of Field Robotics (2019). LINK


Paper #19: Chong Huang, Chuan-En Lin, Zhenyu Yang, Yan Kong, Peng Chen, Xin Yang, and Kwang-Ting Cheng. 2019b. Learning to Film from Professional Human Motion Videos. In Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition (2019) LINK


Paper #20: Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., & Hilliges, O. (2017). Real-time planning for automated multi-view drone cinematography. ACM Transactions on Graphics (TOG), 36(4), 1-10. LINK


Behavioral animation




Paper #21: E. de Sevin, D. Thalmann. A motivational model of action selection for virtual humans. CGI 2005. LINK



Paper #22:Alexander Shoulson, Max L. Gilbert, Mubbasir Kapadia, Norman I. Badler. An Event-Centric Planning Approach for Dynamic Real-Time Narrative. MIG 2013. LINK



Paper #23:John Funge, Xiaoyuan Tu, Demetri Terzopoulos. Cognitive Modeling - Knowledge Reasoning and Planning for Intelligent Characters. SIGGRAPH 1999. LINK


Motion Planning




Paper #24:Strudel, R., Garcia, R., Carpentier, J., Laumond, J. P., Laptev, I., & Schmid, C. (2020). Learning Obstacle Representations for Neural Motion Planning. arXiv preprint arXiv:2008.11174. LINK

Contacts

marc.christie at irisa.fr
fabrice.lamarche at irisa.fr
julien.pettre at inria.fr
ludovic.hoyet at inria.fr