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Abstract

We investigate the problem of 6 degrees of freedom

(DOF) camera planning for filming professional human

motion videos using a camera drone. Existing methods

[4, 3, 5] either plan motions for only a pan-tilt-zoom (PTZ)

camera, or adopt ad-hoc solutions without carefully con-

sidering the impact of video contents and previous camera

motions on the future camera motions. As a result, they

can hardly achieve satisfactory results in our drone cin-

ematography task. In this study, we propose a learning-

based framework which incorporates the video contents and

previous camera motions to predict the future camera mo-

tions that enable the capture of professional videos. Specif-

ically, the inputs of our framework are video contents which

are represented using subject-related feature based on 2D

skeleton and scene-related features extracted from back-

ground RGB images, and camera motions which are rep-

resented using optical flows. The correlation between the

inputs and output future camera motions are learned via a

sequence-to-sequence convolutional long short-term mem-

ory (Seq2Seq ConvLSTM) network from a large set of video

clips. We deploy our approach to a real drone system by

first predicting the future camera motions, and then convert-

ing them to the drone’s control commands via an odometer.

Our experimental results on extensive datasets and show-

cases exhibit significant improvements in our approach over

conventional baselines and our approach can successfully

mimic the footage of a professional cameraman.

1. Introduction

Filming human motions with a camera drone is a very

challenging task, because it requires the cameraman to take

an overall consideration of the scenes, the moving subject
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Figure 1. We learn a model to predict camera motions which

imitate the operation of the professional cameraman.

and the previous camera motions to determine the next cam-

era motion, and meanwhile precisely control the drone to-

wards the target position and camera pose. In this study, we

investigate the problem of autonomously planning 6DOF

motions of a camera drone as an expert for filming a video

with a moving subject (see Fig. 1).

Several studies have been conducted in the literature

for autonomous camera planning. Existing solutions range

from heuristic parametric methods to learning-based non-

parametric approaches. For instance, the state-of-the-art

autonomous filming application DJI QuickShot employs

a parametric method by providing several filming modes,

each of which utilizes a predefined path and camera poses

for producing footages. Without considering the video

contents, this simple solution usually suffers from prob-

lems including losing tracking of the subject and/or cap-

turing repetitive unexciting patterns. Learning-based non-

parametric methods, such as [4, 3, 5], are much more flex-

ible as they can learn (almost) arbitrary camera motion pre-

dictors directly from training data. In [4, 3], Chen et al.

learned a 3DOF camera pose predictor via recurrent deci-

sion trees to imitate professional filming basketball game

events. In their method, a sequence of moving subjects’ po-

sitions and camera poses were utilized to predict the next

best camera pose. This method was also applied to au-

tomatic soccer game broadcasting [5]. However, existing
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learning-based methods only predict the rotation of a PTZ

camera in a team sports, while in our drone cinematog-

raphy task we demand prediction of both camera rotation

and trajectories. In addition, the background scene in team

sports typically has few impacts on camera planning while

in drone cinematography the same subject’s motion in dif-

ferent scenes could demand quite different camera motions.

For instance, to film a subject walking along a cliff or walk-

ing on the grass, an expert may prefer to fly the camera

drone towards the back and upward so as to capture a big

perspective of the world around the subject for the former

scene, while the expert may fly the camera drone forward

and circle around to create a dramatic reveal of the sub-

ject for the latter scene. The increased degrees of free-

dom in camera motions and the diversity of the background

scenes, significantly increase complexity of the relation-

ship between the visual contents and future camera motions,

while these issues have not been well studied.

Although several imitation learning methods, including

behavioral cloning [48, 39, 44], policy learning [24] and

inverse reinforcement learning [38, 1], have been devel-

oped and applied to robotics tasks, few of them are directly

applicable to our automated drone cinematography task. On

one hand, behavioral cloning [48, 39, 44] requires both ob-

servations and explicit control variables for training while

direct control variables are not available from videos. On

the other hand, policy learning [24] and inverse reinforce-

ment learning [38, 1] require the access to the environment

during training that provides the feedback between states

and actions for training, while in our task there is no access

to the environment during training.

In this work, we aim at an autonomous drone cinematog-

raphy system which imitates experts to plan camera poses

and trajectories. To this end, we propose a novel imita-

tion learning framework which takes previous subjects’ and

camera motions and background scenes as input and pre-

dicts subjects’ and camera motions in the following mo-

ments. We design 2D skeleton-based features to represent

subjects’ motions, leverage CNN features to represent back-

ground scenes and utilize dense optical flows to represent

camera motions rather than 6DOF motion parameters for

greatly reducing the difficulties in acquiring training data.

We apply a sequence-to-sequence convolutional long short-

term memory (Seq2Seq ConvLSTM) network to combine

the temporal and spatial information of different inputs,

and to predict the following subject’s and camera motions.

Since there is no such data for learning to imitate profes-

sional filming, we collect a new dataset which contains 92

video clips and is group into 6 categories according to the

camera motion styles for filming a video. We analyze the

impact of different inputs and compare the proposed method

with several baselines. Experimental results demonstrate

the superiority of our method to conventional baselines. We

also deploy our model to a real drone platform and the real

demo shows that our drone cinematography system can suc-

cessfully mimic the footage of a professional cameraman.

In summary, our contributions are four-fold:

• A novel autonomous drone cinematography system

which could well imitate a professional cameraman to

film videos of human motions.

• An imitation learning framework which takes scenes,

subjects’ poses and camera motions as inputs and

learns to predict camera motions from a large set of

professional human motion videos.

• A new dataset consists of 92 video clips for imitation

filming. The dataset will be released to benefit the

community of learning-based filming.

• Comprehensive experiments and ablation studies to

demonstrate the superiority of the proposed method

over the state-of-the-arts.

We discuss related work in Sec. II, and describe our

methods in Sec. III. In Sec. IV, we present the experimental

results to evaluate our system. Finally, we give the conclu-

sion in Sec. V.

2. Related Work

Autonomous Aerial Filming: Commercially available

applications are often limited to watching a specified target

from a fixed viewpoint, e.g. ActiveTrack [8], or a prede-

fined path, e.g., Quickshot [9]. These solutions can hardly

provide cinematic footage for various dynamic scenarios.

Recent research works [36, 37, 12, 13, 23, 16, 25, 18, 17]

enable more flexibility in terms of human-drone interactions

in an aerial filming task. For instance, in [36, 37, 12, 13],

the users are allowed to specify the subject size, viewing

angle and position on the screen to generate quadrotor mo-

tion plans automatically. However, their methods consider

the camera and the drone as the same rigid body in the con-

trol optimization process. As a result, these methods usu-

ally suffer from the severe shaking problem in the captured

footages. The systems in [23, 18, 25] model a camera on a

gimbal attached to a quadrotor and apply two independent

controllers to guarantee smooth videos. These techniques

are used essentially to move the camera to the target pose

specified by the user; therefore, the aesthetic quality of the

video highly relies on the user’s input. Huang et al. [17]

designed an automatic drone filming system that estimate

the next optimal camera pose which maximizes the visibil-

ity of the subject in an action scene. But only considering

the subject’s visibility is still too simplified to ensure a high-

aesthetic quality of the captured video in various complex

real-world scenarios.
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Imitation Filming: Imitation filming is essentially a

data-driven autonomous camera planning solution. In [4]

and [3], the authors utilized video clips of basketball games

to imitate professional filming for team sports. In [15], the

authors learned a model based on images labeled with the

object’s positions for tracking the most salient object in a

360◦ panoramic video.

Video Aesthetic Quality Assessment: Many studies

have been conducted to imitate human’s way for evaluat-

ing the aesthetic quality of videos. Conventional methods

mainly employ handcrafted features including color dis-

tribution [19, 21, 20], the rule of thirds [6], simplicity

[33, 32], composition [7] and motion [35] for describing

the aesthetic quality of a video. Recent works focus on

learning deep convolutional neural networks (CNNs) fea-

tures [28, 50] for the aesthetic quality assessment task [30,

26, 31, 34, 47].

3. Method

3.1. Problem Formulation

We aim at a learner that can imitate human experts’ pol-

icy for camera planning by “watching” a large collection of

professional videos from experts. Let İ = (It−M+1, ..., It)
and ċ = (ct+1, ct+2, ..., ct+N ) denote a sequence of input

video frames and a stream of the subsequent camera motion,

where t denotes a temporal point. The control policy of hu-

man experts is defined as a prediction function: ċ = π∗(İ).
The goal of the learner is to find a policy π̂ that best imitates

the human experts π∗.

In particular, three key factors that affect the prediction

performance are: 1) the feature design of the input images,

2) the accuracy of the groundtruth (i.e., camera motion), and

3) the learning ability of the model.

Input feature: Three components are highly related to

imitation-oriented camera planning: 1) The motions (e.g.

velocity, position and pose) of the subject, which would de-

termine the camera’s moving velocity, trajectory and view-

point to provide the best view of the subject; 2) The back-

ground scene which would affect the composition of a

frame, e.g. it is better to include both the subject and flower-

ing shrubs in a frame, and exclude disordered clutters from

the frame; 3) The previous camera motions which could en-

sure a smooth footage. Imitating an expert to film is a highly

complex task and we think it is necessary to jointly consider

all the three components and their impacts on the final cap-

tured footage. Therefore, in this work we design novel fea-

tures to effectively represent the three components. Details

will be presented in Sec. 3.2.1.

Camera motion: Just like beginners always learn to

paint by first copying every stroke of masters’ work, we

think that training the learner to duplicate the flying trajecto-

ries and camera poses provided by the experts should be an

effective scheme for imitating filming. It is feasible to ob-

tain camera motions via visual-inertial navigation on a real

camera drone platform equipped with inertial sensors [41];

however, it is impossible to derive absolute camera motions

directly from training videos which do not contain inertial

sensor data collected from the internet. As a result, directly

utilizing camera motions as the output prohibits the usage of

enormous professional videos publicly available online for

training, and in turn impose great difficulties in collecting

sufficient training data.

To alleviate the problem of collecting training data, we

utilize dense optical flow of the static regions in a video as

the output label of the learner to reflect the camera motion.

The camera motions in the testing phase are recovered via a

VIN system. Details of converting optical flows to camera

motions are presented in Sec. 3.2.3.

Learning method: A desired learning model should ef-

fectively fuse information from multiple inputs and mean-

while spatial and temporal information from the inputs and

their correlations with output predictions. To this end, we

design on learning model based on the convolution long

short-term memory (ConvLSTM) [49] to mine spatial and

temporal information of each type of input and to fuse mul-

tiple input types in the network.

In addition, the length of the input and output sequences

may be not equal. Therefore, we apply sequence-to-

sequence architecture (Seq2Seq) [46] to map the input ob-

servation to the future camera motion. Details of our learn-

ing method is presented in Sec.3.2.2.

3.2. Imitation Learning Framework

This section describes the framework of our imitation

learning algorithm (see Fig. 2), including feature extraction

(Sec.3.2.1), prediction network (Sec.3.2.2) and camera mo-

tion estimation (Sec.3.2.3).

3.2.1 Feature extraction

Subject motion feature: As discussed in the previous sec-

tion, we desire to encode the subject’s motion in the feature

representation. To this end, we design the subject motion

feature in which the pose of the subject are represented us-

ing 13 keypoints of a skeleton extracted from OpenPose [2]

(see Fig. 3 3rd column). The velocity of the subject could

be partially reflected by consecutive subject motion maps.

However, OpenPose detects only a single pixel for each

keypoint, which could be very sensitive to small geomet-

ric changes. To address this problem, we convolve each of

13 keypoints using a Gaussian kennel independently to blur

and dilate the keypoint, yielding 13 subject motion maps for

a video frame (see Fig. 3 last column).

It is common that OpenPose could fail to detect joint

keypoints when the size of the subject is too small. To alle-
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Figure 2. Overview of our imitation learning framework. The framework is consisted of three modules: 1) feature extraction, 2) prediction

network and 3) camera motion estimation. We illustrate the dimension of the data flow as (time-step × width × height × depth).

Figure 3. The extraction process of the subject motion feature.

viate this problem, rather than directly applying OpenPose

to the entire image, we use subregions of the image con-

taining human detected by the YOLOv3 [42] (see Fig. 3

2nd column). Such preprocess step could greatly exclude

background clutters and remove distractors for OpenPose.

If the YOLOv3 detects the human but the OpenPose fails

to detect the keypoints, we will copy the keypoints in the

previous frame to this frame. We noticed that this scheme

performs well on our benchmark videos despite the size of

the subject is small.

The subject motion maps at temporal point t could effec-

tively represent the pose of the moving subject. Concate-

nating subject motion maps of successive temporal points

could reflect the relative motion between the subject and

camera. In our experiment, we resize each feature map into

40×20 pixels.

Background Feature: To represent background scenes,

we extract CNN features of the original RGB image using

a 3-layer convolutional encoder as describe in Tab. 1. The

final output feature maps are converted to three maps with

size of 40×20 pixels.

Camera motion: As discussed in Sec.3.1, we use optical

flow to represent the camera motion. In particular, we adopt

the dense optical-flow method because it outputs the fixed

amount of motion vectors, each of which corresponds to a

pixel with the same spatial position in RGB image. This

Table 1. Layer parameters of background feature extraction net-

work. The output dimension is given by (width × height × depth).

PS: patch size for convolutional and transposed convolutional lay-

ers; S: stride. Layer types: C: convolutional

Name Type Output Dim PS S

F-conv1 C 160x80x32 3x3 2

F-conv2 C 80x40x64 3x3 2

F-conv3 C 40x20x3 3x3 2

design facilitates learning the spatiotemporal relationship

between the subject and the background. Many advanced

dense optical flow extraction methods could be used, e.g.

FlowNet1.0 [10] and FlowNet2.0 [22]. In this work, we

utilize the method proposed by Liu et al. [29] for its high

efficiency on a drone platform and sufficient robustness in

our task. For each frame, two dense optical flow maps are

outputted by [29], representing the horizontal and vertical

components of the optical flow for every pixel respectively.

The dense optical flow maps are also resized to images of

40×20 pixels for the subsequent processing.

For each frame, we stack the 13-channel subject motion

maps, the 3-channel scene maps and the 2-channel optical

flow maps to form an 18-channel representation. We con-

catenate feature representation of M consecutive frames as

the input of the prediction network.

3.2.2 Prediction Network

The prediction network is based on a Seq2Seq ConvLSTM

model (see Fig. 2), including an encoder and a decoder. All

the ConvLSTM [49] cells in the encoder and decoder share

the same weights.

The encoder first processes each input of M feature maps

(40× 20× 18) using 4 convolutional layers, and then feeds

the output of the last convolutional layer to the ConvLSTM

recurrently. The decoder receives the state vector of en-

coder conditioned on M inputs and produces predictions

for the following N steps. The outputs of the ConvLSTM
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are further processed using 4 transposed convolutional lay-

ers [11] to predict the subject’s motion and camera mo-

tion. Each subject’s motion is represented using 13 subject

motion maps and the corresponding camera motion is de-

scribed using 2 dense optical maps. Thus we split the out-

put of the last transposed convolutional layer to two groups,

the first group consists of N×40×20×13 maps represent-

ing the subject’s motions of N temporal points and the other

group consists of N×40×20×2 maps representing the cam-

era motions of N temporal points. Details of the prediction

network are shown in Tab. 2. The selection of M and N is

experimentally evaluated in Sec.4.4.

Table 2. Layer parameters of prediction network. The output di-

mension is given by (width × height × depth). PS: patch size

for convolutional and transposed convolutional layers; S: stride.

Layer types: C: convolutional, TC: transposed convolutional, CL:

convolutional LSTM cell.

Name Type Output Dim PS S

P-conv1 C 40x20x8 3x3 2

P-conv2 C 20x10x8 3x3 1

P-conv3 C 20x10x8 3x3 2

P-conv4 C 10x5x4 1x1 1

convLSTM CL 10x5x4 3x3 1

P-tconv4 TC 10x5x4 1x1 1

P-tconv3 TC 20x10x8 3x3 2

P-tconv2 TC 20x10x8 3x3 1

P-tconv1 TC 40x20x15 1x1 2

We train our prediction network using a combination of

two L2-norm losses: 1) the pixel-wise mean square errors

(MSE) between the predicted optical flow and the corre-

sponding ground truth, i.e. L2(ḟ , ḟ∗), and 2) the pixel-

wise MSE between the predicted subject motion feature and

the corresponding ground truth, i.e. L2(ṗ, ṗ∗), as shown in

Eq. 1.

min α ∗ L2(ḟ , ḟ∗) + β ∗ L2(ṗ, ṗ∗) (1)

where ḟ and ṗ refer to the future dense optical flows

(ft+1, ..., ft+N ) and subject motions (pt+1, ..., pt+N ), re-

spectively. ()∗ is used to distinguish the ground-truth from

the prediction. We use α and β to balance the weight of

the prediction of the optical flow and human pose. In our

experiments, α and β are set as 1 and 0.3.

The first loss L2(ḟ , ḟ∗) ensures a high-fidelity imitation

of the planned camera’s trajectories and poses. The second

loss L2(ṗ, ṗ∗) ensures the proper composition of the picture

and the view of the moving subject.

3.2.3 Camera Motion Estimation

This section describes how to estimate the camera motion

from optical flow during online filming. We apply a two-

stage strategy to generate a camera trajectory: First, we

use the learned model to predict the future optical flow

{ft+1, .., ft+N} for the new input images {It, .., It−M+1}.

Second, according to the optical flow maps at time [t+1t+
N ], we identify 800 matching points, based on which we

can derive an essential matrix E [14]. We decompose E as

Eq. 2 to obtain the 3DOF rotation and 3DOF translation of

the camera at time t+ i:

(p′)TK−TEK−1(p) = 0

E = R[t]×
(2)

where p and p′ are homogeneous image coordinates of

the start point and end point of the optical flow vectors.

K,E,R and [t]× refer to the camera intrinsic matrix, the

essential matrix, the rotation matrix and the matrix repre-

sentation of the cross product with the translation vector,

respectively.

Because the essential matrix is up to scale (i.e. the scale

of the translation is ambiguous), we apply a simple and effi-

cient method to get the scale parameter before autonomous

filming: the drone automatically moves backward to collect

10 images of a subject within 2 meters. We estimate the

translation (up to scale) from the collected images based

on the decomposition of the essential matrix. We calculate

the scale parameter by dividing the camera trajectory from

the drone’s navigation system and the estimated translation.

After initialization, the scale, as a constant factor, is multi-

plied to the camera translation estimated from optical flow

as the final translation.

Once N steps of camera motions are obtained, we gen-

erate a smooth and feasible trajectory with a min-snap poly-

nomial trajectory planning algorithm [43]. This trajectory

will be sent to the actuator to control the drone.

3.3. Dataset Collection

We collect the professional-level outdoor video clips

from a website www.gettyimages.com, which offers profes-

sional photography and videography. Specifically, we used

three keywords “aerial view, one man only, sport” to initial-

ize our search. This study focuses on imitate filming videos

of human motions, thus the collected videos mainly contain

three types of activities, i.e. walking, jogging, stretching

and rotating. We excluded the searched video results which

contain extremely poor lighting conditions, subjects taking

up too small regions and/or being occluded for too long

time during the video. As a result, we obtained 92 qualified

videos, each of which is around 15-30 seconds long, yield-

ing videos of totally 2284 seconds. We resized each video

frame to 320x160 and down-sampled the video to frame rate

of 3fps to adapt to the actual computation speed. In addi-

tion, we provide the ground-truth of optical flow and subject

motion feature. More specifically, we apply the state-of-

the-art optical flow method Flownet2.0 [22] to extract the

ground-truth of optical flow. The ground-truth of subject
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pose is based on the result of OpenPose, while we manu-

ally correct the misidentified skeleton joints to replace the

original result.

Figure 4. The examples of the videos labeled with the style.

To learn different filming styles, we recruit 3 human an-

notators and asked them to manually group the videos based

on the “filming styles”. As the “filming styles” are actually

subjective and are not explicitly provided, in this study the

annotators determine the style subjectively according to an

overall consideration of 1) the relative movement between

the background scene and subject in a video and 2) the con-

tent of the scene.

Each video was labeled by 1 annotator and verified and

corrected by the other 2 annotators. Each annotator could

add a new style group if he/she thought a current video

should not belong to any of the existing style groups. Even-

tually, the dataset is grouped into 6 styles (see Fig. 4) and

Tab. 3 shows the statistics of the style annotations.

Table 3. statistics of the style annotations in our data

Style A B C D E F

Total Video 21 18 7 18 15 13

Length (seconds) 345 314 75 414 271 249

We analyze the distribution of different styles in terms of

different features. We represent each video as a set of seg-

ments, each of which includes 9 successive frames. Each

frame is represented by dense optical flow, the screen coor-

dinates of the skeleton and the RGB images. We visualize

the distribution of the videos with different styles in terms

of three features after PCA (see Fig. 5). We can see that the

optical flow, skeleton and RGB image have complementary

relationship for filming styles segmentation, which verifies

our intuition to fuse these feature to predict camera motion.

4. Experiments

In this section, we describe the experimental setup and

the measurement metrics used for evaluation, followed by

Figure 5. The distribution of 6 filming styles in terms of optical

flow, skeleton and RGB image after PCA.

experimental results.

4.1. Experimental Setup

We split our dataset into 60 training videos and 32 test

videos. The number of videos from style A, B, C, D, E and

F is 14, 12, 5, 12, 10, 9 for the training set and 7, 6, 2, 6, 5,

4 for the testing set. For each training and testing video, we

applied an overlapping sliding window with a length of 27

to generate a set of clips. The stride of the overlapping slid-

ing window is 1. Accordingly, we generate a total of 5827

training clips and 3108 testing clips. We further augmented

the training data by flipping each video clip along the hori-

zontal axis, yielding 11654 training clips. We train our net-

work on the Nvidia Tesla K50c and utilize Adamax [27] to

perform the optimization, with a learning rate of 0.001.

We evaluate our method using two types of metrics:

1) The average endpoint error (AEE) [45] of the pre-

dicted optical flow which aims at examining the differences

between the predicted camera motions and the true cam-

era motions from experts. Specifically, each pixel (i, j) in

the predicted optical flow map contains the horizontal and

vertical components (ui,j , vi,j). The AEE is defined as the

means of an absolute error between the estimated flow map

(u, v) and ground truth optical flow map (uGT , vGT ):

AEE =
√

(u− uGT )2 + (v − vGT )2 (3)

2) A subjective quality score obtained from a user study.

We recruited 10 volunteers and each volunteer was asked to

score the similarity between the recorded video with train-

ing videos (from 1: worst to 5: best). We calculate the av-

erage score of the 10 volunteers for each testing video and

then average the score on all testing videos.

4.2. Ablation Study

In this subsection, we design the experiments based on

our dataset to carefully analyze the impact of three factors

on the final imitation filming results: 1) parameter selection,

2) inputs selection, and 3) the learning model.

4.2.1 Selection of M and N

We experimentally evaluate the combination of several dif-

ferent (m,n) values, where m and n denote the length of
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input and output sequences. The psychological literature

[40] indicated that the human brain system has a specific

mechanism to split the process of perception into successive

stimuli to reduce the complexity, and the temporal grouping

of stimuli roughly has a temporal limit around 3 seconds.

Therefore, we focused on analyzing video clips of 3 sec-

onds, which is 9 frames based on the frame-rate (i.e. 3fps)

of our videos. Accordingly, the potential parameter com-

binations investigated in this study are under the constraint

that the summation of m and n is 9. . For each combi-

nation, we train a prediction model, denoted as Mm Nn.

For each training clip, we select the first m frames (i.e. I1
... Im) as input and the sub-sequence {Im+1 ... Im+n}
as output (ground-truth). For each testing clip, we select

the sub-sequence {I18−m+1 ... I18} as input and the last 9

frames (i.e. I19 ... I27) as output, because this scheme can

guarantee the same ground-truth for different models.

Fig. 6 displays the AEE (unit: pixel) as a function of

the number of predicted frames for different (m,n) values.

It is noted that the length of prediction is not limited by the

selection of N because the decoder can continuously predict

the next frame by feeding itself with the current state vector.

Three observations can be made from the results:

Figure 6. Comparison of the prediction models with varying set-

tings (i.e., M and N ) on the training sequence.

1) The prediction accuracy decreases as the length of the

horizon increases.

2) There exists an optimal N for a given input length,

i.e. AEE(M9 N9) < AEE(M9 N3)≈AEE(M9 N18) <

AEE(M9 N1). Large N increases the difficulty of training

even if it contributes to extending the prediction horizon.

3) The M is not always positively correlated

with the prediction accuracy, i.e. AEE(M9 N9) <

AEE(M18 N9) < AEE(M3 N9) < AEE(M1 N9).

Although larger M provides more context for prediction, it

increases the probability of overfitting during training.

According to Fig. 6, we set M = 9 and N = 9 in the

following experiments.

4.2.2 Impacts of Three Inputs

We exam the impacts of three types of inputs: optical flow

(F), background feature (B) and subject motion feature (S).

We train seven models with different combinations and

Fig. 7 shows performance of all the models. When compar-

ing the three models using only F, S and B respectively as

the input, we observe that optical flow plays a greater role

in predicting the future camera motions than background

and subject motion, i.e. AEE(F ) < AEE(B) < AEE(S).

Integrating either subject motion or scene features into the

model F, denoted as S+F and B+F, could further reducing

the prediction error. Combing all the three inputs, denoted

as S+B+F, achieves the smallest AEE, indicating the com-

plementary information from three types of inputs.

Figure 7. Comparison of different input combinations.

4.2.3 Impact of Human Motion Prediction Loss

Figure 8. Left: comparison of the prediction models with/without

the human motion prediction loss. Right: comparison of two mod-

els trained from aerial videos and handheld videos.

Fig. 8 (Left) compares the two models trained with and

without the human motion prediction loss, i.e. L2(ṗ, ṗ∗) in

Eq. 1. Results show that including L2(ṗ, ṗ∗) in the training

process could further reduce the camera motion prediction

error by 3.93%∼10.20%. This is because the evolution of

the subject’s appearance is also related to the optical flow

prediction. The loss function poses a constraint for learning

filming skills, which reduces search space and enables an

increase in efficiency of solving optimization problem.

4.2.4 Learning Ability of the Imitation Model

We evaluate learning ability of our imitation model by train-

ing two networks using two different types datasets: the col-

lected aerial videos as described in Sec.3.3 and the human
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motion videos captured using handheld devices downloaded

from Youtube. Both training sets contain 60 videos, which

generate 11654 and 12032 training clips, respectively. We

evaluate both models on the 32 test aerial videos (Sec.4.1).

Fig. 8 (Right) illustrates that the model trained from the

aerial videos can predict more accurate optical flow than the

model from handheld videos because the handheld videos

are different from aerial videos in terms of filming style.

We can draw the conclusion that the imitation model can

distinguish filming styles from different training videos.

4.3. Application to Drone Cinematography System

Figure 9. Left: top view of our prototype drone based on DJI Ma-

trix 100. Right: the onboard processor module contains Nvidia

Jetson TX2 and DJIManifold. The communication between on-

board systems and ground station is bridged by a router.

In this subsection, we deploy our imitation filming

method to a real drone platform for the autonomous cin-

ematography task. Specifically, we build our drone cine-

matography system on the DJI Matrix 100 (see Fig. 9 (left)).

We deploy the algorithm on two onboard embedded systems

(Nvidia Jetson TX2 and DJI Manifold) (see Fig. 9 (right))

and a ground station PC (ThinkPad Intel i7). We mount a

USB-powered router on the drone to enable wireless com-

munication between the drone and the ground station.

Table 4. Comparison of imitation performance of different styles

A B C

4.14±0.73 4.42±0.49 4.57±0.29

D E F

4.29±0.61 4.14±0.24 4.14±0.49

We conduct a user study (as described in Sec. 4.1) to

evaluate the quality of the autonomous drone cinematogra-

phy system. Prior to the experiments, we trained the vol-

unteers by showing them a collection of video pairs and the

corresponding predefined score from 1 to 5 so that every

volunteer follows the same criterion for their assessment.

In the experiments, we use the drone system to automat-

ically capture 30 videos, 5 videos for each filming style.

Tab. 4 shows the mean score and its standard deviation for

each style. In general, the average score for each style is

above 4.0, indicating an overall satisfactory quality of the

captured videos. Fig. 10 shows several snapshots of two

videos autonomously captured by the model with style A,

which share the similar style of zooming out.

Figure 10. The snapshots of two autonomously captured video.

Table 5. Subjective quality of videos captured by our autonomous

drone cinematography system.

Proposed Huang et al. [17] ActiveTrack [9]

4.29±0.54 3.15±0.24 2.64±0.37

We also compare our system with two state-of-the-art au-

tonomous drone cinematography systems, i.e. Huang et al.

[17] and commercial product DJI drone Spark’s mode “Ac-

tiveTrack” [9]. Huang et al. [17] defined the viewpoint that

maximizes the visibility of the human pose as the “best”

viewpoint. DJI Active Track [8] locks the subject on the im-

age center and keep the fixed viewpoint. We start at a fixed

relative drone pose with respect to the subject and capture

10 video clips for each system. The results in Tab. 5 show

that our work can capture more visual-pleasing videos than

those from Huang et al. [17] and commercial product DJI

drone Spark’s mode “ActiveTrack” [9]. Huang et al. [17]

will capture jittering videos when the fast human motion

generates dramatic change of the best viewpoint. The fixed

viewpoint in ActiveTrack makes the viewer feel unexcited.

5. Conclusions

This work studies how to use imitation-based method

to plan the camera motion for capturing professional hu-

man motion videos. We formulate and analyze this problem

from three aspects: 1) the input image feature 2) the cam-

era motion and 3) the learning model. In addition, we col-

lect a dataset including professional human motion videos

and manually group these video into six styles based on the

camera trajectory. Based on the analysis on this dataset, we

propose a learning-based framework which directly incor-

porates the video contents and previous camera motions to

predict the future camera motions. Our experimental results

on the datasets and showcases exhibit significant improve-

ments of our approach over existing methods and our ap-

proach can successfully mimic the professional footage.
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