
ACM Reference Format
Min, J., Chai, J. 2012. Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and
Synthesis. ACM Trans. Graph. 31 6, Article 153 (November 2012), 12 pages.
DOI = 10.1145/2366145.2366172 http://doi.acm.org/10.1145/2366145.2366172.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2012 ACM 0730-0301/2012/11-ART153 $15.00 DOI 10.1145/2366145.2366172
http://doi.acm.org/10.1145/2366145.2366172

Motion Graphs++:
a Compact Generative Model for Semantic Motion Analysis and Synthesis

Jianyuan Min
Texas A&M University

Jinxiang Chai∗

Texas A&M University

Figure 1: Semantic motion analysis (left) and synthesis (right) with our generative statistical model.

Abstract

This paper introduces a new generative statistical model that al-
lows for human motion analysis and synthesis at both semantic and
kinematic levels. Our key idea is to decouple complex variations
of human movements into finite structural variations and continu-
ous style variations and encode them with a concatenation of mor-
phable functional models. This allows us to model not only a rich
repertoire of behaviors but also an infinite number of style varia-
tions within the same action. Our models are appealing for motion
analysis and synthesis because they are highly structured, contact
aware, and semantic embedding. We have constructed a compact
generative motion model from a huge and heterogeneous motion
database (about two hours mocap data and more than 15 differ-
ent actions). We have demonstrated the power and effectiveness
of our models by exploring a wide variety of applications, ranging
from automatic motion segmentation, recognition, and annotation,
and online/offline motion synthesis at both kinematics and behavior
levels to semantic motion editing. We show the superiority of our
model by comparing it with alternative methods.

Keywords: character animation, generative motion models, se-
mantic motion analysis and synthesis, motion planning

Links: DL PDF

∗e-mail: jianyuan|jchai@cs.tamu.edu

1 Introduction

This paper focuses on constructing a generative motion model to
create a rich repertoire of behaviors for virtual humans. Thus far,
one of the most successful solutions to this problem is to build gen-
erative statistical models from prerecorded motion data. Genera-
tive statistical models are appealing for motion analysis and syn-
thesis because they are compact, they have strong generalization
ability to create motions that are not in prerecorded motion data,
and they can generate an infinite number of motion variations with
a small number of hidden variables. Despite the progress made over
the last decade, creating appropriate generative statistical models
for human motion synthesis and control remains challenging for a
number of key reasons.

Scalability. A responsive lifelike human character must possess
a rich repertoire of activities and display a wide range of styles
within the same action. This inevitably requires generative statis-
tical models to scale up well to huge and heterogeneous motion
datasets. However, current generative statistical models (e.g., [Chai
and Hodgins 2007; Lau et al. 2009; Min et al. 2009]) are often
behavior-specific and focus on modeling detailed style variations
within the same action. They have not demonstrated that they can
model a rich repertoire of behaviors and a wide range of style vari-
ations at the same time.

Semantic embedding. Current approaches often fail to encode se-
mantic information into generative models. For example, they can-
not identify when and where to pick up an object and cannot count
how many walking steps are in output animation. This prohibits
the user from creating and controlling an animation at the seman-
tic level (e.g., “walk five steps and pick up the object”). However,
for many applications, users are more interested in which actions to
perform than how to animate the character at the kinematics level.

Contact awareness. Current generative models are not contact
aware because they encode little or no information about environ-
mental contact information such as “left foot on ground.” As a re-
sult, generated motions often violate environmental contact con-

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

http://doi.acm.org/10.1145/2366145.2366172
http://portal.acm.org/ft_gateway.cfm?id=2366172&type=pdf

straints unless the user explicitly specifies the timings and positions
of contact constraints across the entire motion. This is always unde-
sirable because it leads directly to noticeable visual artifacts (e.g.,
foot sliding and ground penetration) in output animation.

Structure preserving. While there is an infinite number of mo-
tion variations within the same action, global structures of the same
action are always finite. For example, walking emerges as a se-
quence of alternating double and single-stance phases, whereas run-
ning alternates between single-stance and flight. Current genera-
tive statistical models, however, are mainly focused on modeling
spatial-temporal variations within a small temporal window rather
than global structures of human actions, and thus face great risk of
destroying motion structures in the generalization process.

This paper introduces a generative motion model that addresses all
the aforementioned challenges. One key idea is to decouple com-
plex variations of human movements into finite structural varia-
tions and continuous style variations and encode them separately
into a finite graph of morphable functional models. Each node in
the graph stores a morphable function Xi = M(si), where the pa-
rameters si provide a continuous, compact representation for allow-
able style variations corresponding to a particular motion primitive
Xi. Each edge is associated with a probability distribution function
pr(si|sj) that defines possible transitions from one motion prim-
itive to another one. These morphable models can be strung to-
gether to create a rich repertoire of activities in the fully continuous
configuration space of a human character. Another key idea of our
modeling process is to embed semantics and contact information
into generative statistical models. This is a nontrivial task because
it requires automatic annotation of an infinite number of motions
generated by generative statistical models.

Our generative motion models are compact and amenable for mo-
tion analysis and synthesis (Figure 1). We have constructed a
compact generative model from a huge and heterogeneous motion
database (about two hours mocap data and more than 15 differ-
ent actions). We have demonstrated the power and effectiveness
of our models by exploring a wide variety of applications, rang-
ing from automatic motion segmentation, classification, and anno-
tation, online/offline motion synthesis and control, performance-
based animation control to semantic motion editing. To the best
of our knowledge, this is the first generative statistical model that
allows for motion analysis and synthesis at a semantic level.

Our work is made possible by a number of technical contributions:

• A generative statistical motion model that addresses all the
aforementioned challenges. This also requires us to build
probabilistic transition models that ensure seamless transi-
tions from one morphable functional model to another.

• A Maximum A Posteriori (MAP) framework for analyzing,
synthesizing, controlling, and editing human motion at both
kinematic and semantic levels.

• A novel motion planning technique that combines the power
of graph walks, probabilistic sampling, and gradient-based
optimization for motion analysis and synthesis.

• A new motion analysis process that allows for automatic mo-
tion segmentation, classification, and annotation at a semantic
level. In addition, we introduce a new motion editing pro-
cess that allows the user to conveniently edit an input motion
sequence at a semantic level. This is nontrivial as previous
motion editing tools are mainly focused on kinematic motion
editing.

2 Background

Our work builds upon a significant body of recent work on con-
structing generative statistical models for human motion analysis
and synthesis. Generative statistical motion models are often rep-
resented as a set of mathematical functions, which describe human
movement using a small number of hidden parameters and their as-
sociated probability distributions. Thus far, a wide variety of gener-
ative statistical models have been developed and their applications
include motion analysis and synthesis, inverse kinematics, and mo-
tion style interpolation and transfer. In general, previous genera-
tive statistical models can be categorized into variants of Hidden
Markov Models (HMMs) [Molina Tanco and Hilton 2000; Bowden
2000; Brand and Hertzmann 2000], statistical dynamic models for
modeling spatial-temporal variations within a small temporal win-
dow [Li et al. 2002; Hsu et al. 2005; Chai and Hodgins 2007; Lau
et al. 2009; Ye and Liu 2010; Wei et al. 2011], and low-dimensional
statistical models for human poses [Grochow et al. 2004; Chai and
Hodgins 2005]. Our models advance the state of the art in human
motion modeling by addressing the four aforementioned challenges
in generative statistical modeling. We show for the first time that
generative statistical models can be applied to analyze and synthe-
size a rich repertoire of human activities at both kinematic and se-
mantic levels.

Our generative motion model builds on the success of deformable
motion models developed by Min et al. [2009]. However, their
models, while powerful, are inherently limited to modeling spatial-
temporal variation in structurally similar motions and thus are not
appropriate to analyze and synthesize a rich repertoire of behav-
iors. We significantly extend their idea to heterogeneous data sets
by concatenating distinctive morphable functions via graph walks
and probabilistic sampling. This extension is non-trivial because it
leads us to a new contact-aware and semantic embedding genera-
tive model for human motion analysis and synthesis, a novel GP-
based transition model that ensures seamless transitions from one
morphable model to another one, a new motion planning technique
that combines the power of graph walks, probabilistic sampling,
and gradient-based optimization, and a number of new applications
such as semantic motion analysis, synthesis and editing.

Our approach models complex human movement using a finite di-
rected graph of morphable motion models. Though the general idea
of using a directed graph for human motion modeling is not new and
dates back to pioneering work on motion graphs [Kovar et al. 2002;
Arikan and Forsyth 2002; Lee et al. 2002], our approach is differ-
ent from motion graphs as well as their various extensions [Arikan
et al. 2003; Gleicher et al. 2003; Lau and Kuffner 2005; Safonova
and Hodgins 2007; Shum et al. 2008; Lee et al. 2010] in that our
models are generative and concatenate continuous morphable func-
tions rather than discrete poses from prerecorded motion data. As
a result, our models are more compact and allow for more accurate
motion control than motion graphs (see comparison results in Sec-
tion 5.5). In addition, unlike motion graphs, our models are also
amenable to motion analysis such as motion segmentation, classi-
fication, and annotation. More recently, Lee and colleagues [2010]
extended the idea of motion graphs by concatenating continuously
interpolated poses from prerecorded motion data. However, similar
to motion graphs, their models are not generative because they need
to retain all prerecorded motion data for motion interpolations and
concatenations. They are also not highly structured and semantic
embedding, and thus prohibit the user from synthesizing and con-
trolling human motion at the semantic level.

Our models are related to recent work on using interpolations for
motion synthesis and control [Rose et al. 1998; Kovar and Gleicher
2004; Mukai and Kuriyama 2005; Shin and Oh 2006; Heck and
Gleicher 2007; Treuille et al. 2007]. Motion interpolations regis-

153:2 • J. Min et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

(a) (b)
Figure 2: A morphable graphs model for running: (a) we decompose running motions into four distinctive motion primitives, including
“left stance”, “flight 1”, “right stance”, and “flight 2” and model their transitions with a directed graph of four nodes. Each graph node
i ∈ V stores a generative statistical model, including a morphable function Xi = M(si) and a prior distribution function pr(si), to model
continuous style variations with a small number of morphable parameters si. An arc (i, j) ∈ A, which represents an allowable transition
from primitive i to primitive j, stores a probability distribution function pr(sj |si) over the morphable parameters sj at node j, given the
morphable parameters si at node i. (b) An infinite number of running styles can be generated by our morphable graphs model using random
motion generation algorithm described in Section 4.1.

ter a set of structurally similar motion examples and parameterize
them in an abstract space defined for motion interpolations. Among
all the systems, our approach is most similar to parametric motion
graphs by Heck and Gleicher [2007], which extended motion inter-
polation techniques to heterogeneous datasets by constructing al-
lowable transitions between different types of interpolated actions.
Similar to motion graphs, their models are not generative and are
not amenable to motion analysis and editing. Our transition model
is also different from theirs because it is based on Gaussian pro-
cesses rather than local interpolations adopted in their work. In ad-
dition, instead of using sparse data interpolations for motion con-
trol, we formulate the motion synthesis and control problem in a
Maximum A Posteriori framework and develop a hybrid optimiza-
tion procedure to find an optimal solution. This enables more accu-
rate and flexible animation control (see comparison results in Sec-
tion 5.5).

Our work is also relevant to recent efforts on developing a highly
structured representation for large unstructured motion capture
datasets. One notable example is motion motif graphs developed
by Beaudoin and colleagues [2008]. The motion-motif graph ap-
plies motion segmentation and clustering techniques to unstruc-
tured motion data and builds a graph-based representation for the
compressed motion data. However, their representation is mainly
designed for analyzing and visualizing the contents and connectiv-
ity of prerecorded motion datasets rather than motion synthesis and
control targeted in this paper. It is not clear how their representa-
tion can be extended to enable accurate and flexible motion control
at both the kinematic and semantic levels. In addition, their mod-
els also have the same limitations as previous generative statistical
models.

3 Morphable Graphs Modeling

While natural human movement displays a wide range of style vari-
ations within the same action, high-level structures of human ac-
tions are always finite. For example, walking emerges as a sequence
of alternating double and single-stance phases, whereas running al-
ternates between single-stance and flight. This observation leads us

to develop an efficient representation for human movement.

In our new representation, we decompose each action into distinc-
tive motion primitives and encode transitions between motion prim-
itives using a directed graph. For example, we decompose run-
ning motions into four distinctive motion primitives, including “left
stance,” “flight 1,” “right stance,” and “flight 2,” and encode their
transitions with a directed graph of four nodes (see Figure 2(a)),
where each node corresponds to a distinctive motion primitive. Fi-
nite graph structures are appropriate to model high-level structures
of human movement because in practice there is a finite number
of distinctive motion primitives. Each motion primitive, however,
might display an infinite number of stylistic variations such as con-
tinuous speed variations. We choose to use generative statistical
models to represent continuous style variations within each primi-
tive because they can model an infinite number of motion variations
using a small number of parameters. In this paper, we call genera-
tive motion models associated with each motion primitive as mor-
phable motion primitives and a directed graph of morphable motion
primitive as morphable graphs.

We model complex human movements using a finite directed graph
of morphable motion primitives: G = (V,A). A node i ∈ V in
the graph corresponds to a morphable motion primitive, including
a morphable function Xi = M(si) and a prior distribution func-
tion pr(si) over the morphable parameters si. An arc (i, j) ∈ A,
which represents an allowable transition from node i to j, stores a
probability distribution function pr(sj |si) over the morphable pa-
rameters sj at node j, given the morphable parameters si at node i.
Another unique property of our generative model is that each mor-
phable motion primitive is embedded with environmental contact
information and semantics.

We outline the modeling process as follows:

• We first identify important keyframes (e.g., left foot strike) for
each motion example in the database and use them to decom-
pose each motion sequence into distinctive motion segments.
Motion segments are automatically placed into the same mo-
tion primitives if they share the same set of keyframes.

Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and Synthesis • 153:3

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

• We apply functional data analysis techniques to all motion
segments associated with the same motion primitive and con-
struct a morphable function to compactly represent continu-
ous style variations within the same motion primitive: Xi =
M(si), where the vector si is a low-dimensional vector for the
i-th motion primitive. For each primitive, we also model a
prior distribution function pr(si) over the morphable vector si
to ensure generated motions are close to prerecorded motion
data.

• We organize all the morphable motion primitives into a finite
directed graph G = (V,A). Each node i ∈ V in the graph
stores one morphable motion primitive. A directed edge (i,j) is
added toA if there is a valid transition from one motion prim-
itive i to another one j in prerecorded motion data. We con-
struct transition distribution functions pr(sj |si) using Gaus-
sian Processes (GP) to model possible transitions between ad-
jacent morphable motion primitives.

• We annotate each morphable motion primitive to embed envi-
ronmental contact information and semantic knowledge into
the generative models.

We describe details of each step in the rest of this section.

3.1 Preprocessing Motion Data

Our motion data preprocessing step aims to decompose unstruc-
tured motion data into a set of contact-consistent, structurally simi-
lar motion segments that are suitable for functional data analysis.

Motion segmentation. Similar to motion interpolations [Rose et al.
1998], our preprocessing step first identifies a set of “keyframes” in
prerecorded motion examples, which are used to segment motion
examples into distinctive motion primitives. In our application, the
keyframes often correspond to instances when contact state tran-
sitions occur (e.g., left foot strike) or instances with highest visual
content changes such as “punching,” “picking,” and “placing.” This
ensures that all the motion segments within the same motion prim-
itive are contact consistent and structurally similar. Contact tran-
sition frames are automatically detected by using a similar method
adopted in [Lee et al. 2002]. To detect frames that correspond to
highest visual content changes, we select a few motion examples
for each action and annotate all the keyframe poses in each of the
selected examples. The system then automatically search similar
keyframe poses in the rest motion examples by using the distance
metric similar to [Kovar et al. 2002]. We segment each sequence
at the keyframes and group all the motion segments in terms of
the keyframes. Motion segments that share the same starting and
ending keyframes are placed into the same group (i.e. motion prim-
itive).

Motion registration and decomposition. For each motion prim-
itive, we register all the motion segments against each other and
decompose them into two functional data sets which are suitable
for generative statistical modeling. Briefly, we pick one segment as
a reference motion and use it to register the rest of segments with
appropriate time warping functions. We register motion examples
in a translation- and rotation-invariant way by decoupling each pose
from its translation in the ground plane and the rotation of its hips
about the up axis [Kovar and Gleicher 2003]. We employ dynamic
time warping techniques to register all motion segments within the
same motion primitive. Next, we warp each motion segment to
a new motion segment in a canonical timeline defined by the ref-
erence motion using their corresponding time warping functions.
This step allows us to decompose all the motion segments within
the same motion primitive into two functional data sets: warped
motion segments and time warping functions. Both data sets are de-

fined in the canonical timeline and therefore are suitable for func-
tional statistical analysis.

3.2 Modeling Morphable Motion Primitives

We now discuss how to apply generative statistical modeling tech-
niques to the preprocessed motion data to construct a compact mor-
phable function that operates in the fully-continuous configuration
space of the character. Our analysis algorithm builds upon func-
tional data analysis described in [Min et al. 2009].

We apply functional PCA to all the warped motion segments as-
sociated with each motion primitive. As a result, we can model
a motion segment defined in a canonical timeline by the reference
motion using a mean motion segment p0 and a weighted combina-
tion of eigen motion segments pm,m = 1...,M :

P(~α) = p0 + [p1...pM]~α, (1)

where the vector ~α = [α1, α2, ..., αM]T represents the eigen
weights and the vectors pm,m = 1, ...,M are a set of orthogo-
nal modes to model geometric variations across the entire motion
sequence.

Similarly, we apply functional PCA to all the time warping
functions associated with each motion primitive to build a low-
dimensional model for time warping functions. To preserve the
property of time warping functions, which are always positive and
strictly monotonic everywhere, we transform the precomputed time
warping functions w(t) into a new space z(t): z(t) = ln(w(t) −
w(t − 1)), t = 1,T and apply the functional PCA to the trans-
formed time warping functions in the new space. Finally, we trans-
form the function back to the original space and obtain the follow-
ing low-dimensional representation for time warping functions:

H(t;~γ) =
∑t
i=1 exp(b0(i) + [b1(i)...bK(i)]~γ), (2)

where the vector ~γ is the combination weights to represent a time
warping function in a low-dimensional space and the scalar bk(i)
represents the i-th component of the k-th eigen vector bk, k =
1, ...,K.

After combining Equation (1) and (2), we obtain the following mor-
phable function to model spatial-temporal variation of a motion
primitive:

X = M(s)
= P(~α)⊗ H(~γ),

(3)

where the morphable vector s stacks the vector ~α and ~γ. The opera-
tor ⊗ warps a motion segment P(~α) in the canonical time line with
a time warping function H(~γ).

We learn a joint probability distribution function pr(s) based on
the warped motion segments and the precomputed time warping
functions from prerecorded data. We model the prior distribu-
tion pr(s) with a Gaussian mixture model (GMM). The parameters
of the Gaussian mixture model are automatically estimated using
an Expectation-maximization algorithm [Bishop 1996]. The joint
probability distribution constrains the motion generated by the mor-
phable motion to stay close to the prerecorded motion examples.

3.3 Transitions Between Morphable Primitives

Now each node i ∈ V in the graph contains a continuous morphable
function M(si) and a prior distribution function pr(si) over the
morphable parameters . Our next challenge is to model possible
transitions for every arc (i, j) ∈ A in the graph G. This will allow
us to concatenate morphable primitives to form a rich repertoire

153:4 • J. Min et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

of human activities. The problem is challenging because of finite
samples in an infinite space.

Our idea is to utilize the prerecorded motion data to learn a prob-
ability distribution function pr(sj |si) for predicting the morphable
parameters at one node sj from another si. A high value for the
distribution function pr(sj |si) means a good transition from one
motion segment M(si) to another one M(sj). We propose to use a
Gaussian Process (GP) model to model a probabilistic distribution
function pr(sj |si). We choose the Gaussian process because GP can
efficiently model nonlinear properties of transition functions and its
learning process involves very few manual tuning parameters. GP
and its invariants have recently been applied to many problems in
computer graphics, including nonlinear dimensionality reduction
for human poses [Grochow et al. 2004], motion editing [Ikemoto
et al. 2009], and motion synthesis [Wei et al. 2011].

In our application, GP learns a prior distribution function over the
morphable parameters sj at node j, given the morphable parameters
si at node i and training data D. We write this probability as

pr(sj |si,D). (4)

Because we use Gaussian process, the probability distribution func-
tion defined in Equation (4) is a multidimensional Gaussian distri-
bution function:

pr(sj |si,D) = N (µ(si),Σ(si)), (5)

where both mean µ and covariance matrix Σ are functions of the
morphable parameters si (for details, see [Rasmussen and Williams
2006]). If the covariance has a small determinant, then the Gaussian
distribution has a narrow peak, indicating high confidence in the
prediction; similarly, a large determinant indicates low confidence.

There are several publicly available implementations of Gaussian
process. We used the Gaussian process library developed by
Lawrence [2009]. One limitation of GP learning is that memory
requirements and computational demands grow as the square and
cube respectively of the size of training data. We address this lim-
itation by adopting sparse approximation strategies for Gaussian
process regression [Quinonero-Candela and Rasmussen 2005].

3.4 Annotating Morphable Graphs

This section discusses how to embed environmental contact infor-
mation and semantic knowledge into morphable graphs models.

Contact annotation. In general, annotating a generative statisti-
cal model with environmental contact information is difficult be-
cause doing so requires accurate annotation of an infinite number
of motion instances generated by the model. Our generative model
naturally supports environmental contact annotation because mo-
tions generated by the same morphable motion primitive are al-
ways contact-consistent and structurally similar. We annotate our
morphable graphs model by annotating the canonical timeline of
every morphable primitive. The advantage to annotating the canon-
ical timeline is that annotation labor is irrelevant to the number of
database examples. For example, a morphable primitive for walk-
ing can be easily annotated by labeling its four contact instances on
the canonical timeline (“left heel down,” “left toe up,” “right heel
down’,’ “right toe up”).

We encode contact information in each frame using a binary fea-
ture vector. Each bit represents a particular type of contact events,
e.g., left toe plants on the ground. For locomotion such as walk-
ing, jumping, and running, each frame requires only a 4-bit label
(left heel, left toe, right heel, and right toe). Extra bits (e.g., left hip
and right hip, left knee and right knee, left hand and right hand) are

needed to encode contact-rich motions such as “sitting,” “kneeling
down,” and “climbing up.” Contact annotation enables us to au-
tomatically enforce environmental contact constraints in a motion
generalization process, thereby eliminating noticeable visual arti-
facts such as foot sliding and ground penetration in output anima-
tion.

Semantics annotation. Semantics annotation is used to describe
high-level behaviors of human movements. In our system, we use
them to describe motion primitives in the graph. To accommodate
a rich repertoire of activities, the annotations should be flexible. In
other words, the user should be able to use an arbitrary vocabulary
suited to the motions being annotated. The vocabulary chosen for
the annotations defines the level of control of the synthesis.

We first annotate qualitative features of motions. The database
of motions used for our examples consisted of approximately two
hours of “everyday” activities. The vocabulary that we chose to
annotate this database consisted of: standing, walking, running,
jumping, stepping stones, backward walking, kneeling down, kneel-
ing up, picking, placing, sitting, standing up, left punching, right
punching, climbing up, and climbing down. Our annotation vocab-
ulary reflects our database. A different choice of vocabulary would
be appropriate for different collections. Some of these annotations
can co-occur: “picking an object while kneeling down.”

A more accurate description of motions at the task level often re-
quires appropriate annotation of quantitative properties of human
actions. For example, a task-level description of “picking” often
needs to identify when and where to pick up an object. This causes
problems for the annotations because both the timings and the hand
locations of “picking” motion instances are not constant but vary
with morphable parameters. To address this issue, we choose to an-
notate the “timings” on the canonical timelines of morphable prim-
itives and describe the “locations” based on their local coordinates
rather than global coordinates. Now both the canonical timeline and
the local coordinates are constant; therefore, their semantic infor-
mation can be conveniently embedded into morphable primitives.
More generally, important quantitative features of motions are often
defined by kinematic functions of character poses at multiple key
instances. Annotating such features requires encoding both kine-
matic functions and the timing of key instances. Similarly, anno-
tating semantics on the canonical timeline allows us to significantly
reduce annotation labor. In our experiment, the entire process for
annotating both contacts and semantics takes about 30 minutes for
the morphable graphs model constructed from a two-hours motion
capture database with 16 distinctive behaviors.

In our implementation, we create a mapping table to embed both
qualitative and quantitative features into the morphable graphs
models. The mapping table is critical to semantic motion synthesis
and analysis. On one hand, semantic motion synthesis can retrieve
the mapping table to convert semantic control commands into low-
level animation constraints. For example, verbs such as “walking”
and “running” are mapped to corresponding morphable primitives
(i.e. graph nodes) and adverbs such as “five steps” are mapped to
the total number of graph nodes visited. On the other hand, they
can be used in motion analysis process to extract the semantics em-
bedded in unknown motion sequences.

4 Applications

One key advantage of our generative models is that they are
amenable for motion analysis and synthesis at both the kinematic
and sematic level. Section 4.1 discusses how to apply our model to
generate natural-looking human movements. We then describe its
applications in online motion control (Section 4.2), offline anima-
tion design (Section 4.3), and semantic motion analysis and editing

Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and Synthesis • 153:5

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

(Section 4.4).

4.1 Random Motion Generation

The morphable graphs model decomposes overall motion variations
into finite structural variations from continuous style variations.
Accordingly, we develop a two-step approach to synthesize a ran-
dom motion sequence.

• Structural variation synthesis. Structural variation is crit-
ical for creating a rich repertoire of human activities. We
synthesize structural variations by sequentially concatenating
morphable nodes via graph walks. Since every graph node
stores a distinctive morphable primitive, a graph walk pro-
duces a path of morphable nodes, denoted as n0 → ...→ nT .

• Style variation synthesis. Once we obtain a sequence of mor-
phable nodes, we can use them to create a wide range of style
variations via probabilistic sampling techniques. Briefly, we
first generate a motion segment X0 = M(sn0) by randomly
drawing a sample for the morphable parameters sn0 based on
the prior distribution pr(sn0) stored in the first node n0. We
synthesize subsequent motion segments Xi = M(sni), i =
1, ..., T by recursively drawing a random sample for the mor-
phable parameters sni based on the transition distribution
pr(sni |sni−1) as well as the morphable parameter sni−1 at
the previous graph node ni−1.

To transition from one motion segment to another one, e.g.,
Xi−1 → Xi, we rotate and translate every motion segment so that
each segment starts from where the previous one ended. Modeling
the possible transitions with a distribution function prevents gen-
erating unnatural transitions and therefore significantly reduces the
discontinuities around the transition points. In practice, there might
still be some discontinuities around the transition points. However,
these discontinuities are often very small and we can distribute them
within a smoothing window around the discontinuity. We address
this issue using motion blending techniques present by Arikan and
Forsyth [2002]. Although blending avoids jerkiness in the transi-
tions, it might violate environmental contact constraints. Our pro-
cess eliminates the artifact by automatically enforcing contact con-
straints embedded in the morphable graphs model. Figure 2(b)
shows three sequences of running motions randomly generated by
our motion generation process.

4.2 Online Motion Control

Our model naturally supports online motion control. Motions are
planned on a node-by-node basis using a hybrid motion planning
process that combines the power of graph walks, probabilistic sam-
pling, and gradient-based optimization. Given the current mor-
phable node, the online planner evaluates the state resulting from
each of many possible actions that follows the current node. This
planning process is recursively run to look one or more morphable
nodes into the future.

We formulate the online motion control problem in a Maximum
A Posteriori (MAP) framework. Given the current state of human
characters, M(sn0), n0 ∈ V , the current control commands speci-
fied by the user col, and the interaction 3D environment e, we de-
termine an optimal path of the morphable nodes n1 → ...→ nL as
well as the optimal values for corresponding morphable parameters
sn1 , ..., snL by solving the following MAP problem:

max{n1,...,nL},{sn1 ,...,snL
} pr(sn1 , ..., snL |sn0 , col, e), (6)

where L is the number of morphable nodes the planning process
looks into the future.

According to Bayes rule, the above posteriori distribution function
can be decomposed into the following three terms:∏L

i=1 pr(sni |sni−1)pr(e|sn1 , ..., snL)pr(col|sn1 , ..., snL), (7)

where the first term is the transition term defined in Equation (5),
which models the prior distribution that transitions from one mor-
phable node (sni−1) to another one (sni). The second term is the
contact-awareness term which penalizes the inconsistency between
the generated motion and the environmental contacts e. The third
term is the control term which measures how well the generated
motion satisfies the user’s control inputs col. In the following we
focus our discussion on the contact-awareness term and the control
term since the transition term is already defined in Equation (5).

Contact-awareness term. One appealing property of our model
is that every frame in generated motions is automatically annotated
with contact information. The contact-awareness term ensures that
synthesized motions are always consistent with environmental con-
tacts. More specifically, for every frame in the concatenated motion
pieces M(sni), i = 1, ..., L, we first retrieve the contact informa-
tion encoded in the corresponding morphable function. If there is
a contact between the character and the environment (e.g., the left
foot must be planted on the ground), we measure the distance be-
tween the synthesized contact point on the character and the cor-
responding contact plane. We assume gaussian distributions with
a standard deviation σen for the contact-awareness term. In our
experiment, we set a low value to σen because maintaining correct
environmental contacts is very important to the perceptual quality
of the synthesized motion.

Control term. Our model enables the user to accurately control
a character at both the kinematic and semantic level. Low-level
kinematic control is important because it allows the user to accu-
rately control stylistic variations of particular actions. Our online
motion control framework is very flexible and supports any kine-
matic control inputs. The current system allows the user to control
an animation by selecting any point on the character and specifying
a path for the selected point to follow. The user could also direct the
character by defining the high-level control knobs such as turning
angles, step sizes, and locomotion speeds.

Assuming gaussian noise with a standard deviation of σol for the
user’s control inputs col, we can define the likelihood of the control
term for kinematics control as follows:

pr(col|sn1 , ..., snL) ∝ exp(
−‖f(M(sn1

),...,M(snL
))−col‖2

2σ2
ol

), (8)

where the function f is a forward kinematic function that map the
“hypothesized” motion to “hypothesized” control knob values. The
standard deviation σol indicates the user’s confidence in the spec-
ified control inputs and is important for the tradeoff between the
control accuracy and the quality of the generalized motion. The
higher the standard deviation; the lower the confidence.

Semantic motion control focuses on which actions to perform with-
out becoming entangled in low-level kinematic details. To achieve
motion control at the semantic level, we use semantic knowledge
encoded in the mapping table to convert semantic control com-
mands into appropriate low-level animation constraints, including
graph node constraints and kinematic constraints. For example,
verbs such as “backward walking” are mapped to their correspond-
ing graph nodes. Adverbs such as “picking up an object at a par-
ticular location” are mapped to corresponding graph nodes (“pick-
ing”) as well as kinematic functions retrieved from the mapping
table. The mapped kinematic constraints are used to evaluate the
goodness of the generated motions in a way similar to those used
in kinematic motion control (see Equation (8)). The mapped graph

153:6 • J. Min et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

nodes are compared against the “synthesized” graph nodes to mea-
sure the goodness of the “synthesized” motion.

Realtime motion planning. Online motion control requires solv-
ing the MAP estimation problem in Equation (7). This is a non-
trivial task because it involves optimizing a nonsmooth, nonconvex
function over both discrete variables, n1, ..., nL, and continuous
variables, sn1 , ..., snL . In addition, the planning algorithm should
be fast enough that the control interface appears responsive and the
user remains engaged in the animation task.

One idea is to combine graph walks and probabilistic sampling
techniques to search an optimal solution to the MAP estimation
problem. Briefly, we enumerate all possible paths starting from
the current node, randomly draw a number of independent samples
for each path based on the prior distributions

∏L
i=1 pr(sni |sni−1),

and evaluate the “goodness” of each sample based on the sum of
the control term and the contact-awareness term. One limitation
of probabilistic sampling is that there is no guarantee the sampled
solutions can precisely match the control inputs and environmental
contact constraints.

To address this issue, we propose a hybrid motion planning algo-
rithm that combines graph walks and probabilistic sampling with
gradient-based optimization. We first apply graph walks and prob-
abilistic sampling techniques to find a “close” solution and then
employ gradient-based optimization to fine tune the solution in the
vicinity of the “close” solution. To achieve this, we use the “close”
solution as a reference to fix the path of graph nodes and refine the
values of the morphable parameters by solving the following con-
tinuous optimization problem:

min{sn1:L
}− ln pr(e|sn1 , ..., snL)− ln pr(col|sn1 , ..., snL).

(9)
We analytically evaluate the Jacobian terms of the objective func-
tion and run a gradient-based optimization with the Levenberg-
Marquardt algorithm [Lourakis 2009]. The exact number of sam-
ples for probabilistic sampling depends heavily on the complexity
of the graph and control inputs, but we found 300 samples to be
more than enough for all of the cases we tried. The hybrid plan-
ning algorithm not only alleviates the local minima problem but
also significantly improves the accuracy and efficiency of online
motion control process. The current online motion synthesis sys-
tem runs in real time (42 frames per second) on a machine with
Intel i7 2.80GHZ CPU.

4.3 Offline Motion Design

Our generative model is also well suited for offline animation de-
sign. Similar to online motion control, we formulate the offline an-
imation design problem in a MAP estimation framework. Given
user-defined constraints coff as well as environmental contacts
e, we select the most likely path of morphable nodes n1, ..., nT
and compute the optimal morphable parameters sn1 , ..., snT corre-
sponding to each node:

maxT,{n1:T },{sn1:T
} pr(sn1 , ..., snT |coff , e), (10)

where ni ∈ V is the index for the i-th morphable node in the syn-
thesized motion and T is the total number of the morphable nodes.
However, unlike online motion control, the number of the mor-
phable nodes (T) in offline motion synthesis is often unknown and
needs to be directly estimated from the motion synthesis process.

Again, we decompose the posteriori distribution function in Equa-
tion (10) into three terms and estimate the most likely motion se-
quence M(sn1)→ ...→ M(snT) with the hybrid motion planning
algorithm described in Section 4.2. Similarly, our animation design

system allows for accurate and precise motion control at both the
semantic and kinematic level.

Continuous style editing. Another nice property of our system is
to allow the user to continuously edit stylistic variations of synthe-
sized motions with direct manipulation interfaces. This involves
continuously updating the morphable parameters based on user
constraints, while fixing the path on the graph. The user can in-
crementally edit the synthesized motion by dragging any character
point at any frame, modifying the path of any point on the char-
acter over a period of time, or adjusting the values of high-level
control knobs such as walking directions, speeds, and step sizes.
In addition, we can edit the motion by adjusting positions or sizes
of interaction objects. For example, to edit the styles of the action
“sitting on a chair”, the user can directly manipulate the location or
height of the chair.

Again, we apply the negative log to the posteriori distribution func-
tion and convert the MAP problem into an energy minimization
problem:

min{sn1:T
}−

∑T
i=1 ln pr(sni |sni−1)− ln pr(cedit|sn1 , ..., snT)

− ln pr(e|sn1 , ..., snT).
(11)

Given a fixed path of morphable nodes, n1 → ... → nT , we em-
ploy gradient-based optimization [Lourakis 2009] to incrementally
modify the morphable parameters sn1 , ..., snT based on the updated
constraints cedit on the fly.

4.4 Semantic Motion Analysis and Editing

A primary difference between generative statistical models and al-
ternative data-driven methods such as motion graphs and motion in-
terpolations is that they are amenable to motion analysis. The goal
of our motion analysis process herein is to identify both the mor-
phable primitives {n1, ..., nT } and the corresponding morphable
parameters {sn1 , ..., snT } associated with an “observed” motion
sequence zinput. Again, this can be formulated as the following
MAP estimation problem:

maxT,{n1:n},{sn1:T
} pr(sn1 , ..., snT |zinput), (12)

where ni ∈ V is the index for the i-th morphable node in the input
motion and T is the total number of the morphable nodes.

Our motion analysis process adopts the optimization scheme simi-
lar to motion synthesis and control. We modify the control term in
such a way that measures the difference between the “synthesized”
motion, M(sn1) → ... → M(snT), and the “observed” motion
data, zinput. In addition, we drop off the contact-awareness term
because 3D environments of the “observed” motion sequence are
often unknown. We optimize the motion in the same way as we
do with online motion control. Given the current morphable node,
the motion analysis process evaluates the state resulting from each
of many possible actions that follows the current node. This is ap-
plied recursively to look a small number of morphable nodes into
the future.

Once we synthesize the most likely motion sequence to match the
“observed” motion data, we can automatically annotate the “ob-
served” motion data with semantic knowledge and contact infor-
mation embedded in the “synthesized” motion sequence. This
“analysis-by-synthesis” strategy allows us not only to segment the
“observed” motion data into multiple motion primitives but also to
classify and annotate each motion primitive with our semantic vo-
cabulary. For example, the system can count how many steps are
in an “observed” walking sequence and identify when and where to
pick up an object in a “picking” sequence. The level of semantics

Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and Synthesis • 153:7

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

extracted from input motion depends on the vocabulary chosen for
the annotations. In addition, automatic contact annotations can be
achieved within the same analysis framework.

Semantic motion editing. Unlike kinematic motion editing, se-
mantic motion editing focuses on modifying important qualitative
and quantitative properties rather than low-level kinematic details
of input motion data. Before semantic motion editing, we first ap-
ply semantic motion analysis to extract semantics embedded in in-
put motion data. We modify the extracted semantics and use them
to edit the input motion data in a way similar to offline animation
design. The level of semantic motion editing is dependent on the
vocabulary chosen for the annotations. For example, we can modify
qualitative properties of input motion data by adding and/or delet-
ing particular verbs such as “walking.” We can also edit the mo-
tion at the semantic level by modifying quantitative properties of
the data such as “the number of walking steps,” “when and where
to pick up an object,” and “the location of a sitting chair.” For in-
stance, we can apply semantic motion editing to modify the number
of walking steps, speed up/slow down the walking, or replace walk-
ing with other behaviors.

5 Results

We have demonstrated the power and effectiveness of our model on
a wide variety of online and offline applications, including seman-
tic motion analysis, editing and synthesis, online motion control,
performance-based animation control, and offline motion design.
To the best of our knowledge, this is the first generative statistical
model that has demonstrated motion analysis, synthesis and editing
at a semantic level. In addition, we have demonstrated the superior-
ity of our model over several baseline models such as motion graphs
and motion interpolations. We have also assessed the generalizabil-
ity of our motion model via user studies. Lastly, we have evaluated
the performance of our system in terms of the importance of GP
transition models and the number of samples used for probabilistic
motion planning. Our results are best seen in video form.

Our model is compact as the memory consumption of the con-
structed model (about 16.2Mb) is significantly lower than the orig-
inal training data (about 248.3Mb). It also scales up well to
large and heterogeneous datasets. The original datasets contain
1, 049, 669 frames (145.79 minutes) and consist of 16 distinctive
actions, including standing, walking, running, two-feet jumping,
stepping-stone jumping, sitting down, standing up, climbing up,
climbing down, left punching, right punching, picking, placing,
kneeling down, kneeling up, backward walking, and their transi-
tions.

5.1 Semantic Motion Analysis, Editing and Synthesis

Semantic motion analysis. This experiment demonstrates the
application of our generative motion model to automatic motion
segmentation, classification, and annotation (see Figure 1(left)).
The test motion sequence includes four distinctive human actions
(“walking,” “picking,” “placing,” and “sitting”) as well as their tran-
sitions. Our system automatically decomposes the whole motion
sequence into motion segments corresponding to distinctive actions
and then classify each motion segment using our annotation vo-
cabulary. In addition, our system can also annotate the input mo-
tion sequence using semantic information embedded in our model,
for example, counting the number of walking steps and identifying
when and where to pick up and place an object.

Semantic motion editing. After we extract semantic information
embedded in the input motion data with our motion analysis pro-
cess, we can edit the motion at the semantic level, for example,

replacing the “walking” with the “backward walking,” inserting
new actions “climbing up” and “climbing down” to pick up an ob-
ject placed on an extremely high place, and inserting new actions
“kneeling down” and “kneeling up” to pick up an object on the
ground. The accompanying video shows the results obtained by the
semantic motion editing process.

Semantic motion synthesis. Semantic motion synthesis allows the
user to accurately and interactively control a human character by
simply issuing high-level control commands such as “walking four
steps to reach a point (A),” “jumping twice to a point (B),” and
“picking up the object at (C)” (see Figure 1(right)). Animation and
control of human characters at the semantic level is particularly im-
portant for novice users or autonomous agents, as it allows them to
focus on high-level tasks rather than low-level kinematic details.

5.2 Online Motion Control

The online motion control system offers precise, realtime control
over human characters with any kinematic constraints. We have
demonstrated the flexibility and effectiveness of our online motion
control system in a number of realtime applications.

Speed control and seamless behavior transitions. The system al-
lows the user to control the speed of the character without worrying
about transitions between different behaviors. For example, grad-
ually speeding up the character automatically invokes transitions
from “slow walking” to “fast walking,” and then to “running.” The
character can also automatically switch to an appropriate jumping
motion in order to avoid obstacles while matching the speed speci-
fied by the user.

Following stepping stones. In this example, the character is asked
to follow the stepping stones in front of her. The user does not need
to specify any contact constraints throughout the whole motion con-
trol process. The stepping stones are arranged to correspond to dif-
ferent step sizes, terrain heights, and turning angles.

Punching control. This experiment shows that the user can control
punching actions in realtime by directly moving the target point in
3D space.

Direction control. This application demonstrates that the user can
accurately control the direction of a walking character with very
little latency. The accompanying video shows that the character
can make a sharp turn, e.g., -180-degree or +180-degree, within the
three steps.

5.3 Performance-based Animation Control

Performance-based animation is particularly appealing to generat-
ing detailed stylistic motions for human characters. The accompa-
nying video shows that the user can synthesize and control a wide
variety of stylistic walking motions, including “goosestep,” “lame
walking,” “sneaky walking,” and “crab walking,” via performance-
based control interfaces. To achieve this, we attach several retro-
markers on the subject and reconstruct the 3D trajectories of the
markers using vision-based tracking techniques similar to tech-
niques described in [Chai and Hodgins 2005]. The system then
automatically generates realistic animation that precisely matches
input trajectory constraints.

5.4 Offline Motion Design

This experiment demonstrates that a novice can use a combination
of offline motion synthesis and continuous style editing techniques
to incrementally create natural-looking animation for human char-
acters. In the accompanying video, we show the whole process for

153:8 • J. Min et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

Figure 3: Comparisons against motion graphs and motion interpolations. The results generated by motion graphs, motion interpolations I,
motion interpolations II and our method are shown in left to right. Note that we visualize user-specified paths and synthesized paths in blue
and maroon, respectively.

creating a long animation sequence in a large and complex environ-
ment, including “normal walking,” “sneaky walking,” “jumping on
stepping stones,” and “sitting on a chair.” For user’s convenience,
various motion control and editing tools have been developed, in-
cluding action selection, path control, keyframe editing, and envi-
ronmental object manipulation.

5.5 Comparisons Against Alternative Methods

We have evaluated the effectiveness of our algorithm by comparing
with motion graphs and motion interpolations. Our comparison fo-
cuses on only motion synthesis and control because neither motion
graphs nor motion interpolations is suitable for motion analysis. We
evaluate the methods based on three criteria: control accuracy and
flexibility, motion quality and memory requirement. The evaluation
is based on four specific applications: “following the path along
a circle (A),” “stylized walking with performance interfaces (B),”
“walking and turning (C),” and “reaching the destination as soon as
possible (D).”

Our motion graphs implementation is based on the technique de-
scribed in [Kovar et al. 2002]. And we use the method described
in [Kovar and Gleicher 2004] to do motion interpolations. Note
that current motion interpolation techniques (e.g., [Kovar and Gle-
icher 2004] and [Mukai and Kuriyama 2005]) are often focused
on interpolations between motion examples rather than transitions
from one example to another one. We, therefore, implement two
versions of motion interpolations algorithms. “Motion interpola-
tion I” uses motion blending techniques described in [Rose et al.
1998] to create motion transitions. “Motion interpolation II” con-
siders the transition smoothness from one segment to another one.
More specifically, when we compute the distance between the cur-
rent motion segment and a database motion segment for interpo-
lations, we consider not only their distance in the control space
(e.g., “walking direction”) but also how well the database motion
segment can be concatenated to the previously synthesized motion
segment. The system interpolates the database motion examples
that can only be smoothly concatenated to the previous synthesized
motion segment. For both interpolation techniques, we apply in-
verse kinematics techniques to remove foot sliding artifacts.

Control accuracy and flexibility. An ideal motion synthesis sys-
tem should allow the users to accurately control an animated char-
acter at different levels in order to accommodate the users with dif-
ferent skill levels. The experiment clearly shows that our method
allows for more accurate motion control than both motion graphs
and motion interpolations at both the kinematics and behavior lev-
els. Table 1 reports the control errors obtained from all the three
methods. For example, for kinematics control command (A) “fol-
lowing the path along a circle” shown in Figure 3, our control error
is 2 cm per frame and this is much smaller than those from motion

Motion types A B C D1 D2

Motion graphs 11 24 8.21 4.7± 1.1 8.4± 1.0
Interp. I 14 22 4.48 N/A N/A
Interp. II 31 31 7.56 N/A N/A

Our method 2 6 3.24 3.1± 0.7 6.9± 0.6

Table 1: Comparisons of control accuracy. The control error units
for motion A, B, C, D1, and D2 are cm per frame, cm per frame,
degrees per turn, seconds and (seconds), respectively.

graphs (11 cm per frame) and both interpolation methods (14 cm
per frame and 31 cm per frame). We have observed that motion
interpolations often produce large control errors when continuous
constraints (e.g., following a path or performance interfaces) are
used for animation control.

For high-level motion control (D) “reaching the destination as soon
as possible,” we fix the starting point of the character and then ran-
domly sample 20 destination points at a specific distance from the
starting point. Column D1 and D2 in Table 1 report the mean and
standard deviation of response times corresponding to the distance
of 10 and 20 meters, respectively. As expected, our method pro-
duces a motion that reaches the final destination much faster than
motion graphs. Note that both motion interpolations methods can-
not achieve the goal specified by the user because they lack a plan-
ning scheme for high-level behavior control.

Figure 4: Comparisons of motion quality. We asked the users to
give a score (1-9) of how realistic synthesized motions are from
each method. This graph shows the results of these scores, includ-
ing means and standard deviations for motions generated by each
method.

Motion quality. We have also compared the quality of synthesized
motions via user studies. We tested fourteen users, including seven

Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and Synthesis • 153:9

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

Figure 5: Evaluation on motion generalization via user studies.
The graph compares the quality of synthesized motions against that
of ground truth motion capture data. The evaluation is based on
animation with different degrees of user constraints variations (ter-
rain heights). We randomly generate 30 terrain heights within each
of terrain-height ranges: [0, 0.15], [0.15, 0.30], [0.30, 0.45], and
[0.45, 0.60] (in meter); we then generate a motion for each specific
terrain height and evaluate its motion quality via user study.

males and seven females. Each user has either little or no previ-
ous experience with 3D animation. We rendered animation on a
stick figure (See Figure 3). We randomly organized 20 animation
clips generated by all the four algorithms and presented them on a
projection screen in a small conference room to the users. Partic-
ipants were instructed to provide a score of how realistic synthe-
sized motions are using a rating scale that ranged from 0 (“least
realistic”) through 9 (“most realistic”). We report mean scores and
standard deviations for motions generated by each method in Fig-
ure 4. The user studies show that motions generated by our method
are highly realistic and in the same level as those from motion
graphs. The motions generated by both interpolations are given
lower scores, mainly because of poor transitions between interpo-
lated motions. Among the two interpolation techniques, “motion
interpolation II” produces more natural looking animations because
it considers transition smoothness in motion interpolations.

Memory size. Computers or game consoles, particularly mobile
devices, have a limited amount of physical memory and are often
constrained in the amount of bandwidth available. A data-driven
model for an animated character should be as compact as possible
in order to minimize the consumption of memory and bandwidth.
Here, we compare memory usage of each model. Our model is
much more compact than motion graphs and motion interpolations.
Our model consumes only about 16Mb memory for the whole mo-
tion database used in our experiment. In contrast, motion interpola-
tions consume about 250Mb memory for the same database because
it needs to retain all the original data for interpolation. Among the
three models, motion graphs model consumes the largest amount
of memory because it stores both the database poses and the edge
connections between all the poses. The motion graphs model we
constructed uses only motion capture data of walking, running,
and their transitions, and the whole graph consumes about 137Mb
memory.

5.6 Evaluation on Motion Generalization

One advantage of our motion models is their ability to generate mo-
tions that are not in a prerecorded motion database. We have stud-
ied the generalizability of our motion model via user studies. Here

we focus our evaluation on one particular animation task “walking
on uneven terrain” by assessing the quality of synthesized motions
corresponding to terrain heights ranging between 0 to 0.6 meters.
Specifically, we randomly generate 30 terrain heights within each
of terrain-height ranges: [0, 0.15], [0.15, 0.30], [0.30, 0.45], and
[0.45, 0.60] (in meter). We then generate a motion for each spe-
cific terrain height and evaluate its motion quality via user study.
For each range of terrain heights, we also pick 30 random motion
sequences from the prerecorded motion database. The mean scores
and standard variations are reported in Figure 5. The user study
result shows that the quality of synthesized motions is compara-
ble to that of motion capture data. And increasing the degree of
user constraints variation does not dramatically affect the quality
of generalized motions. For reference, the percentage of database
motions corresponding to each of terrain-height ranges [0, 0.15],
[0.15, 0.30], [0.30, 0.45], and [0.45, 0.60] is about 70%, 12%,
10%, and 8%, respectively.

5.7 More Evaluations

In addition, we have done experiments to evaluate the performance
of our system in terms of the importance of GP transition models
and the number of samples for probabilistic motion planning.

Number of samples. The companying video shows a side-by-side
comparison for motions generated with a different number of sam-
ples required for probabilistic motion planning. We have observed
that control errors decreases as the number of samples increases.
However, more samples also mean more expensive CPU time. The
number of samples depends on the tradeoff between control accu-
racy and computational time. In our experiment, we found 300
samples are often sufficient to allow for accurate motion control
while still keeping the system running at interactive frame rates.

Importance of GP transition models. In the case of “without
GP transition models,” we exclude GP transition models for se-
lecting and concatenating morphable motions. More specifically,
given a path of morphable nodes from motion planning, we ran-
domly sample the morphable parameters and select motions clips
based on how well the synthesized motions match user-specified
constraints and how smooth the concatenated motions are at tran-
sition frames. Next, we use motion blending techniques to cre-
ate transitions from one motion segment to another one. Lastly,
we apply inverse kinematics to remove foot sliding artifacts. The
comparison video clearly shows that GP transition models improve
the realism of synthesized motions, particularly around transition
frames. For a fair comparison, both motions follow the same path
of morphable nodes and use the same number of samples (300) for
probabilistic sampling.

6 Conclusion and Discussion

We have introduced a generative statistical model to analyze and
synthesize a rich repertoire of human activities. Our models are ap-
pealing for motion analysis and synthesis because they are compact,
highly structured, contact aware, semantic embedding, and scal-
able to huge and heterogeneous datasets. We have demonstrated
the power and effectiveness of our models by exploring a wide va-
riety of exciting applications, ranging from automatic motion seg-
mentation, recognition, and annotation, and online/offline motion
synthesis in both kinematics and behavior level to semantic motion
editing.

Unlike current generative statistical models, motions generated by
our model are always highly realistic. One reason is that morphable
graphs models are highly structured: they not only preserve local
structures within each motion primitive but also model natural tran-

153:10 • J. Min et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

sitions between different motion primitives. Our model is also con-
tact aware and embedded with contact information, thereby remov-
ing unpleasant visual artifacts often present in the motion general-
ization process.

Our morphable graphs model decomposes each human action into
distinctive motion primitives and encodes structural variation us-
ing a graph of motion primitives. As a result, traversing a differ-
ent graph path produces a motion containing a different high-level
structure. We have demonstrated structure variation caused by 16
distinctive actions and their transitions. We have also demonstrated
that our system can generate a wide range of style variations, in-
cluding functional variations (e.g., locomotion speeds, step sizes,
uneven terrains, and turning angles) and stylistic variations such as
“goosestep,” “sneaky walking,” and “lame walking.” This is be-
cause our morphable motion primitives are capable of modeling
an infinite number of style variations associated with each motion
primitive.

Our model is appealing for motion control because it allows the
user to accurately control a realistic human character at different
levels. For example, a novice can focus on which actions to per-
form without concerning styles or kinematic details of synthesized
motions. A more skillful user can precisely control spatial-temporal
variations of complex human actions with detailed kinematic con-
straints. Motion control at the semantic level is particularly enticing
for building intelligent and autonomous characters because we can
focus on our attention on behavior planning rather than kinematics
details. One of the immediate directions for future work is, there-
fore, to investigate the application of our algorithm in generating
autonomous agents or intelligent crowds.

One limitation of our algorithm is that it is data-driven and therefore
cannot generate new motions that cannot be represented by the mor-
phable graphs model. For instance, the current morphable graphs
model cannot generate a motion “walking with head scratching”
because similar patterns are not included in the current database.
One possibility to address this limitation is to capture or keyframe
a motion “walking with head scratching,” register the motion with
the generated motion using the low-body motion data, and transfer
the upper-body pattern “head scratching” to the generated motion.

Acknowledgement

This work was supported by the National Science Foundation under
Grants No. IIS-1055046 and IIS-1065384.

References

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion
generation from examples. In ACM Transactions on Graphics.
21(3):483–490.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2003. Mo-
tion synthesis from annotations. In ACM Transactions on Graph-
ics. 22(3):402–408.

BEAUDOIN, P., COROS, S., VAN DE PANNE, M., AND POULIN,
P. 2008. Motion-motif graphs. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA’08, 117–126.

BISHOP, C. 1996. Neural Network for Pattern Recognition. Cam-
bridge University Press.

BOWDEN, R. 2000. Learning statistical models of human motion.
In IEEE Workshop on Human Modelling, Analysis and Synthesis,
CVPR2000.

BRAND, M., AND HERTZMANN, A. 2000. Style machines. In
Proceedings of ACM SIGGRAPH 2000. 183–192.

CHAI, J., AND HODGINS, J. 2005. Performance animation
from low-dimensional control signals. In ACM Transactions on
Graphics. 24(3):686–696.

CHAI, J., AND HODGINS, J. 2007. Constraint-based motion op-
timization using a statistical dynamic model. In ACM Transac-
tions on Graphics. 26(3):Article No.8.

GLEICHER, M., SHIN, H. J., KOVAR, L., AND JEPSEN, A. 2003.
Snap-together motion: assembling run-time animations. In Pro-
ceedings of the 2003 symposium on Interactive 3D graphics,
I3D’03, 181–188.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND
POPOVIĆ, Z. 2004. Style-based inverse kinematics. In ACM
Transactions on Graphics. 23(3):522–531.

HECK, R., AND GLEICHER, M. 2007. Parametric motion graphs.
In Proceedings of the 2007 symposium on Interactive 3D graph-
ics and games. 129–136.

HSU, E., PULLI, K., AND POPOVIĆ, J. 2005. Style translation for
human motion. In ACM Transactions on Graphics. 24(3):1082–
1089.

IKEMOTO, L., ARIKAN, O., AND FORSYTH, D. 2009. Generaliz-
ing motion edits with gaussian processes. ACM Transactions on
Graphics 28, 1, 1–12.

KOVAR, L., AND GLEICHER, M. 2003. Flexible automatic
motion blending with registration curves. In ACM SIG-
GRAPH/EUROGRAPH Symposium on Computer Animation.
214–224.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and
parameterization of motions in large data sets. In ACM Transac-
tions on Graphics. 23(3):559–568.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In ACM Transactions on Graphics. 21(3):473–482.

LAU, M., AND KUFFNER, J. J. 2005. Behavior planning
for character animation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
SCA’ 05, 271–280.

LAU, M., BAR-JOSEPH, Z., AND KUFFNER, J. 2009. Modeling
spatial and temporal variation in motion data. In ACM Transac-
tions on Graphics. 28(5): Article No. 171.

LAWRENCE, N. D., 2009. Gaussian process software.
http://www.cs.manchester.ac.uk/neill/gp/.

LEE, J., CHAI, J., REITSMA, P., HODGINS, J., AND POLLARD,
N. 2002. Interactive control of avatars animated with human
motion data. In ACM Transactions on Graphics. 21(3):491–500.

LEE, Y., WAMPLER, K., BERNSTEIN, G., POPOVIĆ, J., AND
POPOVIĆ, Z. 2010. Motion fields for interactive character loco-
motion. ACM Transactions on Graphics 29, 138:1–138:8.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture:
A two-level statistical model for character synthesis. In ACM
Transactions on Graphics. 21(3):465–472.

LOURAKIS, M. I. A., 2009. levmar: Levenberg-Marquardt nonlin-
ear least squares algorithms in C/C++.

MIN, J., CHEN, Y.-L., AND CHAI, J. 2009. Interactive genera-
tion of human animation with deformable motion models. ACM
Transactions on Graphics. 29(1): article No. 9.

Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and Synthesis • 153:11

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

MOLINA TANCO, L., AND HILTON, A. 2000. Realistic synthesis
of novel human movements from a database of motion capture
examples. In Proceedings of the Workshop on Human Motion.
137-142.

MUKAI, T., AND KURIYAMA, S. 2005. Geostatistical motion
interpolation. In ACM Transactions on Graphics. 24(3):1062–
1070.

QUINONERO-CANDELA, J., AND RASMUSSEN, C. E. 2005. A
unifying view of sparse approximate gaussian process regres-
sion. Journal of Machine Learning Research. 6: 1935–1959.

RASMUSSEN, C. E., AND WILLIAMS, C. K. I. 2006. Gaussian
Processes for Machine Learning. The MIT Press.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: Multidimensional motion interpolation. In IEEE
Computer Graphics and Applications. 18(5):32–40.

SAFONOVA, A., AND HODGINS, J. K. 2007. Construction and
optimal search of interpolated motion graphs. In ACM Transac-
tions on Graphics. 26(3): Article No. 106.

SHIN, H. J., AND OH, H. S. 2006. Fat graphs: constructing an in-
teractive character with continuous controls. In Proceedings of
the 2006 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, SCA ’06, 291–298.

SHUM, H. P. H., KOMURA, T., SHIRAISHI, M., AND YAMAZAKI,
S. 2008. Interaction patches for multi-character animation. ACM
Transactions on Graphics. 27(5): Article No. 114.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-optimal
character animation with continuous control. ACM Transaction
on Graphics. 26(3): Article No. 7.

WEI, X., MIN, J., AND CHAI, J. 2011. Physically valid statistical
models for human motion generation. ACM Trans. Graph. 30,
19:1–19:10.

YE, Y., AND LIU, K. 2010. Synthesis of responsive motion using
a dynamic model. Computer Graphics Forum (Proceedings of
Eurographics). 29(2): 555-562.

153:12 • J. Min et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 153, Publication Date: November 2012

