Coral.TermInd: generic recursion over locally-closed terms to define denotational interpreters, and associated induction principle
Require Import Infrastructure.
Require Import Env.
Require Import Lia.
Require Import ProofIrrelevance.
Require Import Transp.
Require Import EquivarianceFacts.
Section Ind.
Arguments of the recursor.
Context {A: Type}
(fVar: env A → atom → A → A)
(fLetArg: ∀ (e: env A) (t: term) (a: A), A)
(fLet: ∀ (e: env A) (t1: term) (a1: A) (x: atom) (t2: term) (a2: A), A)
(fLamArg: env A → A)
(fLam: ∀ (e: env A) (x: atom) (t: term) (a: A), A)
(fApp: ∀ (e: env A) (t1: term) (a1: A) (t2: term) (a2: A), A)
(fUnit: env A → A)
(fPair: ∀ (e: env A) (t1: term) (a1: A) (t2: term) (a2: A), A)
(fFst: ∀ (e: env A) (t: term) (a: A), A)
(fSnd: ∀ (e: env A) (t: term) (a: A), A)
(fInjL: ∀ (e: env A) (t: term) (a: A), A)
(fInjR: ∀ (e: env A) (t: term) (a: A), A)
(fMatchArg1: ∀ (e: env A) (t: term) (a: A), A)
(fMatchArg2: ∀ (e: env A) (t: term) (a: A), A)
(fMatch: ∀ (e: env A) (t: term) (a: A) (x1: atom) (t1: term) (a1: A) (x2: atom) (t2: term) (a2: A), A)
.
(fVar: env A → atom → A → A)
(fLetArg: ∀ (e: env A) (t: term) (a: A), A)
(fLet: ∀ (e: env A) (t1: term) (a1: A) (x: atom) (t2: term) (a2: A), A)
(fLamArg: env A → A)
(fLam: ∀ (e: env A) (x: atom) (t: term) (a: A), A)
(fApp: ∀ (e: env A) (t1: term) (a1: A) (t2: term) (a2: A), A)
(fUnit: env A → A)
(fPair: ∀ (e: env A) (t1: term) (a1: A) (t2: term) (a2: A), A)
(fFst: ∀ (e: env A) (t: term) (a: A), A)
(fSnd: ∀ (e: env A) (t: term) (a: A), A)
(fInjL: ∀ (e: env A) (t: term) (a: A), A)
(fInjR: ∀ (e: env A) (t: term) (a: A), A)
(fMatchArg1: ∀ (e: env A) (t: term) (a: A), A)
(fMatchArg2: ∀ (e: env A) (t: term) (a: A), A)
(fMatch: ∀ (e: env A) (t: term) (a: A) (x1: atom) (t1: term) (a1: A) (x2: atom) (t2: term) (a2: A), A)
.
Auxiliary definition for the recursor.
Definition term_recurse0
n (t: term)
(Hsize: size t < n) (Hlc: lc t) (e: env A) (Hfv: fv t [<=] dom e)
: A.
Proof.
revert t Hsize Hlc e Hfv.
induction n; intros; [ abstract (exfalso; lia) | destruct t ].
- abstract (exfalso; inversion Hlc).
- assert A as a.
{ pose (get x e) as o.
assert (get x e = o) as Heq.
{ subst o. reflexivity. }
destruct o as [ a | ].
- exact a.
- abstract (exfalso; apply get_notin_dom in Heq; simpl in Hfv; fsetdec).
}
exact (fVar e x a).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
pick fresh x for (dom e).
assert A as a2.
{ apply IHn with (t := open t2 (Var x)) (e := x ¬ fLetArg e t1 a1 ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
exact (fLet e t1 a1 x (open t2 (Var x)) a2).
- pick fresh x for (dom e).
assert A as a.
{ apply IHn with (t := open t (Var x)) (e := x ¬ fLamArg e ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
exact (fLam e x (open t (Var x)) a).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
assert A as a2.
{ apply IHn with (t := t2) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fApp e t1 a1 t2 a2).
- exact (fUnit e).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
assert A as a2.
{ apply IHn with (t := t2) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fPair e t1 a1 t2 a2).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fFst e t a).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fSnd e t a).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fInjL e t a).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fInjR e t a).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
pick fresh x2 for (dom e).
assert A as a2.
{ apply IHn with (t := open t2 (Var x2)) (e := x2 ¬ fMatchArg1 e t1 a1 ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
pick fresh x3 for (dom e).
assert A as a3.
{ apply IHn with (t := open t3 (Var x3)) (e := x3 ¬ fMatchArg2 e t1 a1 ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
exact (fMatch e t1 a1 x2 (open t2 (Var x2)) a2 x3 (open t3 (Var x3)) a3).
Defined.
n (t: term)
(Hsize: size t < n) (Hlc: lc t) (e: env A) (Hfv: fv t [<=] dom e)
: A.
Proof.
revert t Hsize Hlc e Hfv.
induction n; intros; [ abstract (exfalso; lia) | destruct t ].
- abstract (exfalso; inversion Hlc).
- assert A as a.
{ pose (get x e) as o.
assert (get x e = o) as Heq.
{ subst o. reflexivity. }
destruct o as [ a | ].
- exact a.
- abstract (exfalso; apply get_notin_dom in Heq; simpl in Hfv; fsetdec).
}
exact (fVar e x a).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
pick fresh x for (dom e).
assert A as a2.
{ apply IHn with (t := open t2 (Var x)) (e := x ¬ fLetArg e t1 a1 ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
exact (fLet e t1 a1 x (open t2 (Var x)) a2).
- pick fresh x for (dom e).
assert A as a.
{ apply IHn with (t := open t (Var x)) (e := x ¬ fLamArg e ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
exact (fLam e x (open t (Var x)) a).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
assert A as a2.
{ apply IHn with (t := t2) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fApp e t1 a1 t2 a2).
- exact (fUnit e).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
assert A as a2.
{ apply IHn with (t := t2) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fPair e t1 a1 t2 a2).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fFst e t a).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fSnd e t a).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fInjL e t a).
- assert A as a.
{ apply IHn with (t := t) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
exact (fInjR e t a).
- assert A as a1.
{ apply IHn with (t := t1) (e := e).
- abstract (simpl in Hsize; lia).
- abstract (inversion Hlc; assumption).
- abstract (simpl in Hfv; fsetdec).
}
pick fresh x2 for (dom e).
assert A as a2.
{ apply IHn with (t := open t2 (Var x2)) (e := x2 ¬ fMatchArg1 e t1 a1 ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
pick fresh x3 for (dom e).
assert A as a3.
{ apply IHn with (t := open t3 (Var x3)) (e := x3 ¬ fMatchArg2 e t1 a1 ++ e).
- abstract (simpl in Hsize; rewrite size_open_var; lia).
- abstract (inversion Hlc; subst; auto with lngen).
- abstract (simpl in Hfv; rewrite fv_open_upper; simpl; fsetdec).
}
exact (fMatch e t1 a1 x2 (open t2 (Var x2)) a2 x3 (open t3 (Var x3)) a3).
Defined.
The recursor does not depend on the given sizes, as long as
they are big enough.
Lemma term_recurse0_proof_irrelevant
n1 n2 t1 t2 (Heq: t1 = t2) (Hsize1: size t1 < n1) (Hsize2: size t2 < n2)
(Hlc1: lc t1) (Hlc2: lc t2)
(e1 e2: env A) (Heq_env: e1 = e2)
(Hfv1: fv t1 [<=] dom e1) (Hfv2: fv t2 [<=] dom e2):
term_recurse0 n1 t1 Hsize1 Hlc1 e1 Hfv1 = term_recurse0 n2 t2 Hsize2 Hlc2 e2 Hfv2.
Proof.
revert n2 t1 t2 Heq Hsize1 Hsize2 Hlc1 Hlc2 e1 e2 Heq_env Hfv1 Hfv2.
induction n1; intros; [ exfalso; lia | destruct n2; [ lia |]; subst; destruct t2 ].
- exfalso. inversion Hlc1.
- simpl. f_equal. rewrite (proof_irrelevance _ Hfv1 Hfv2). reflexivity.
- simpl. destruct (atom_fresh (dom e2)) as [x Fr]. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; [ reflexivity |].
f_equal. f_equal. f_equal. apply IHn1; reflexivity.
- simpl. destruct (atom_fresh (dom e2)) as [x Fr]. f_equal.
apply IHn1; reflexivity.
- simpl. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; reflexivity.
- reflexivity.
- simpl. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. destruct (atom_fresh (dom e2)) as [x Fr]. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; [ reflexivity |].
f_equal. f_equal. f_equal. apply IHn1; reflexivity.
+ apply IHn1; [ reflexivity |].
f_equal. f_equal. f_equal. apply IHn1; reflexivity.
Qed.
n1 n2 t1 t2 (Heq: t1 = t2) (Hsize1: size t1 < n1) (Hsize2: size t2 < n2)
(Hlc1: lc t1) (Hlc2: lc t2)
(e1 e2: env A) (Heq_env: e1 = e2)
(Hfv1: fv t1 [<=] dom e1) (Hfv2: fv t2 [<=] dom e2):
term_recurse0 n1 t1 Hsize1 Hlc1 e1 Hfv1 = term_recurse0 n2 t2 Hsize2 Hlc2 e2 Hfv2.
Proof.
revert n2 t1 t2 Heq Hsize1 Hsize2 Hlc1 Hlc2 e1 e2 Heq_env Hfv1 Hfv2.
induction n1; intros; [ exfalso; lia | destruct n2; [ lia |]; subst; destruct t2 ].
- exfalso. inversion Hlc1.
- simpl. f_equal. rewrite (proof_irrelevance _ Hfv1 Hfv2). reflexivity.
- simpl. destruct (atom_fresh (dom e2)) as [x Fr]. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; [ reflexivity |].
f_equal. f_equal. f_equal. apply IHn1; reflexivity.
- simpl. destruct (atom_fresh (dom e2)) as [x Fr]. f_equal.
apply IHn1; reflexivity.
- simpl. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; reflexivity.
- reflexivity.
- simpl. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. f_equal. apply IHn1; reflexivity.
- simpl. destruct (atom_fresh (dom e2)) as [x Fr]. f_equal.
+ apply IHn1; reflexivity.
+ apply IHn1; [ reflexivity |].
f_equal. f_equal. f_equal. apply IHn1; reflexivity.
+ apply IHn1; [ reflexivity |].
f_equal. f_equal. f_equal. apply IHn1; reflexivity.
Qed.
Arguments of the auxiliary size-based induction principle.
Context (P: ∀ (e: env A) (t: term) (a: A), Prop)
(HVar: ∀ (e: env A) x (Hx: x `in` dom e)
n (Hsize: size (Var x) < n)
(Hlc: lc (Var x))
(Hfv: fv (Var x) [<=] dom e)
(a: A) (Hget: get x e = Some a),
P e (Var x) (fVar e x a)
)
(HLet: ∀ (e: env A) x (Hx: x `notin` dom e) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x (dom e)) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 (x ¬ fLetArg e t1 a1 ++ e) Hfv2 = a2)
(IH2: P (x ¬ fLetArg e t1 a1 ++ e) t2 a2),
∀ (Hsize: size (Let t1 (close x t2)) < S n)
(Hlc: lc (Let t1 (close x t2)))
(Hfv: fv (Let t1 (close x t2)) [<=] dom e),
P e (Let t1 (close x t2)) (fLet e t1 a1 x t2 a2)
)
(HLam: ∀ (e: env A) x (Hx: x `notin` dom e) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] add x (dom e)) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 (x ¬ fLamArg e ++ e) Hfv1 = a1)
(IH1: P (x ¬ fLamArg e ++ e) t1 a1),
∀ (Hsize: size (Lam (close x t1)) < S n)
(Hlc: lc (Lam (close x t1)))
(Hfv: fv (Lam (close x t1)) [<=] dom e),
P e (Lam (close x t1)) (fLam e x t1 a1)
)
(HApp: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 e Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hsize: size (App t1 t2) < S n)
(Hlc: lc (App t1 t2))
(Hfv: fv (App t1 t2) [<=] dom e),
P e (App t1 t2) (fApp e t1 a1 t2 a2)
)
(HUnit: ∀ (e: env A) n (Hsize: size Unit < n)
(Hlc: lc Unit)
(Hfv: fv Unit [<=] dom e),
P e Unit (fUnit e)
)
(HPair: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 e Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hsize: size (Pair t1 t2) < S n)
(Hlc: lc (Pair t1 t2))
(Hfv: fv (Pair t1 t2) [<=] dom e),
P e (Pair t1 t2) (fPair e t1 a1 t2 a2)
)
(HFst: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (Fst t1) < S n)
(Hlc: lc (Fst t1))
(Hfv: fv (Fst t1) [<=] dom e),
P e (Fst t1) (fFst e t1 a1)
)
(HSnd: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (Snd t1) < S n)
(Hlc: lc (Snd t1))
(Hfv: fv (Snd t1) [<=] dom e),
P e (Snd t1) (fSnd e t1 a1)
)
(HInjL: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (InjL t1) < S n)
(Hlc: lc (InjL t1))
(Hfv: fv (InjL t1) [<=] dom e),
P e (InjL t1) (fInjL e t1 a1)
)
(HInjR: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (InjR t1) < S n)
(Hlc: lc (InjR t1))
(Hfv: fv (InjR t1) [<=] dom e),
P e (InjR t1) (fInjR e t1 a1)
)
(HMatch: ∀ (e: env A) x2 (Hx2: x2 `notin` dom e) x3 (Hx3: x3 `notin` dom e) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x2 (dom e)) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 (x2 ¬fMatchArg1 e t1 a1 ++ e) Hfv2 = a2)
(IH2: P (x2 ¬ fMatchArg1 e t1 a1 ++ e) t2 a2),
∀ t3 (Hsize3: size t3 < n) (Hlc3: lc t3) (Hfv3: fv t3 [<=] add x3 (dom e)) a3
(Heq3: term_recurse0 n t3 Hsize3 Hlc3 (x3 ¬fMatchArg2 e t1 a1 ++ e) Hfv3 = a3)
(IH3: P (x3 ¬ fMatchArg2 e t1 a1 ++ e) t3 a3),
∀ (Hsize: size (Match t1 (close x2 t2) (close x3 t3)) < S n)
(Hlc: lc (Match t1 (close x2 t2) (close x3 t3)))
(Hfv: fv (Match t1 (close x2 t2) (close x3 t3)) [<=] dom e),
P e (Match t1 (close x2 t2) (close x3 t3))
(fMatch e t1 a1 x2 t2 a2 x3 t3 a3)
)
.
(HVar: ∀ (e: env A) x (Hx: x `in` dom e)
n (Hsize: size (Var x) < n)
(Hlc: lc (Var x))
(Hfv: fv (Var x) [<=] dom e)
(a: A) (Hget: get x e = Some a),
P e (Var x) (fVar e x a)
)
(HLet: ∀ (e: env A) x (Hx: x `notin` dom e) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x (dom e)) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 (x ¬ fLetArg e t1 a1 ++ e) Hfv2 = a2)
(IH2: P (x ¬ fLetArg e t1 a1 ++ e) t2 a2),
∀ (Hsize: size (Let t1 (close x t2)) < S n)
(Hlc: lc (Let t1 (close x t2)))
(Hfv: fv (Let t1 (close x t2)) [<=] dom e),
P e (Let t1 (close x t2)) (fLet e t1 a1 x t2 a2)
)
(HLam: ∀ (e: env A) x (Hx: x `notin` dom e) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] add x (dom e)) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 (x ¬ fLamArg e ++ e) Hfv1 = a1)
(IH1: P (x ¬ fLamArg e ++ e) t1 a1),
∀ (Hsize: size (Lam (close x t1)) < S n)
(Hlc: lc (Lam (close x t1)))
(Hfv: fv (Lam (close x t1)) [<=] dom e),
P e (Lam (close x t1)) (fLam e x t1 a1)
)
(HApp: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 e Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hsize: size (App t1 t2) < S n)
(Hlc: lc (App t1 t2))
(Hfv: fv (App t1 t2) [<=] dom e),
P e (App t1 t2) (fApp e t1 a1 t2 a2)
)
(HUnit: ∀ (e: env A) n (Hsize: size Unit < n)
(Hlc: lc Unit)
(Hfv: fv Unit [<=] dom e),
P e Unit (fUnit e)
)
(HPair: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 e Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hsize: size (Pair t1 t2) < S n)
(Hlc: lc (Pair t1 t2))
(Hfv: fv (Pair t1 t2) [<=] dom e),
P e (Pair t1 t2) (fPair e t1 a1 t2 a2)
)
(HFst: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (Fst t1) < S n)
(Hlc: lc (Fst t1))
(Hfv: fv (Fst t1) [<=] dom e),
P e (Fst t1) (fFst e t1 a1)
)
(HSnd: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (Snd t1) < S n)
(Hlc: lc (Snd t1))
(Hfv: fv (Snd t1) [<=] dom e),
P e (Snd t1) (fSnd e t1 a1)
)
(HInjL: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (InjL t1) < S n)
(Hlc: lc (InjL t1))
(Hfv: fv (InjL t1) [<=] dom e),
P e (InjL t1) (fInjL e t1 a1)
)
(HInjR: ∀ (e: env A) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hsize: size (InjR t1) < S n)
(Hlc: lc (InjR t1))
(Hfv: fv (InjR t1) [<=] dom e),
P e (InjR t1) (fInjR e t1 a1)
)
(HMatch: ∀ (e: env A) x2 (Hx2: x2 `notin` dom e) x3 (Hx3: x3 `notin` dom e) n,
∀ t1 (Hsize1: size t1 < n) (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse0 n t1 Hsize1 Hlc1 e Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hsize2: size t2 < n) (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x2 (dom e)) a2
(Heq2: term_recurse0 n t2 Hsize2 Hlc2 (x2 ¬fMatchArg1 e t1 a1 ++ e) Hfv2 = a2)
(IH2: P (x2 ¬ fMatchArg1 e t1 a1 ++ e) t2 a2),
∀ t3 (Hsize3: size t3 < n) (Hlc3: lc t3) (Hfv3: fv t3 [<=] add x3 (dom e)) a3
(Heq3: term_recurse0 n t3 Hsize3 Hlc3 (x3 ¬fMatchArg2 e t1 a1 ++ e) Hfv3 = a3)
(IH3: P (x3 ¬ fMatchArg2 e t1 a1 ++ e) t3 a3),
∀ (Hsize: size (Match t1 (close x2 t2) (close x3 t3)) < S n)
(Hlc: lc (Match t1 (close x2 t2) (close x3 t3)))
(Hfv: fv (Match t1 (close x2 t2) (close x3 t3)) [<=] dom e),
P e (Match t1 (close x2 t2) (close x3 t3))
(fMatch e t1 a1 x2 t2 a2 x3 t3 a3)
)
.
Auxiliary size-based induction principle.
Lemma term_induction0
n (t:term)
(Hsize: size t < n) (Hlc: lc t) (e: env A) (Hfv: fv t [<=] dom e)
: P e t (term_recurse0 n t Hsize Hlc e Hfv).
Proof.
revert t Hsize Hlc e Hfv.
induction n; intros; [ exfalso; lia | destruct t ].
- exfalso. inversion Hlc.
- apply HVar with (n := S n); auto.
+ simpl in Hfv. fsetdec.
+ simpl.
assert (∀ ox (Heq: get x e = ox),
ox =
Some
(match ox as o return (get x e = o → A) with
| Some a ⇒ fun _ : get x e = Some a ⇒ a
| None ⇒ fun Heq : get x e = None ⇒ term_recurse0_subproof1 x e Hfv Heq
end Heq)) as H.
{ intros ox Heq. destruct ox.
+ reflexivity.
+ exfalso. apply get_notin_dom in Heq. simpl in Hfv. fsetdec.
}
apply H.
- simpl. destruct (atom_fresh (dom e)) as [x Fr].
assert (x `notin` fv t2) as Hfv2.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t2 x); [| assumption; clear Hfv2]; intros.
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t2 (Var x))) (Var x)) (open t2 (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
rewrite open_close.
unshelve (eapply HLet with (n := S n); auto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst; assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. rewrite size_close in Hsize. lia.
+ inversion Hlc. subst.
specialize (H2 x). rewrite open_close in H2. assumption.
+ simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× simpl in Hsize. rewrite size_close in Hsize. lia.
× inversion Hlc. subst.
specialize (H2 x). rewrite open_close in H2. assumption.
× simpl. simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
- simpl. destruct (atom_fresh (dom e)) as [x Fr].
assert (x `notin` fv t) as Hfv0.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t x); [| assumption; clear Hfv0]; intros.
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t (Var x))) (Var x)) (open t (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
rewrite open_close.
unshelve (eapply HLam with (n := S n); auto).
+ simpl in Hsize. rewrite size_close in Hsize. lia.
+ inversion Hlc; subst. specialize (H0 x). rewrite open_close in H0. assumption.
+ simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× simpl in Hsize. rewrite size_close in Hsize. lia.
× inversion Hlc; subst. specialize (H0 x). rewrite open_close in H0. assumption.
× simpl. simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
- unshelve (eapply HApp with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
- apply HUnit with (n := S n). assumption.
+ auto.
+ simpl. auto.
- unshelve (eapply HPair with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HFst with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HSnd with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HInjL with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HInjR with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- simpl. destruct (atom_fresh (dom e)) as [x Fr].
assert (x `notin` fv t2) as Hfv2.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t2 x); [| assumption; clear Hfv2]; intros.
assert (x `notin` fv t3) as Hfv3.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t3 x); [| assumption; clear Hfv3]; intros.
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t2 (Var x))) (Var x)) (open t2 (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t3 (Var x))) (Var x)) (open t3 (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
repeat rewrite open_close.
unshelve (eapply HMatch with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. repeat rewrite size_close in Hsize. lia.
+ inversion Hlc; subst. specialize (H3 x). rewrite open_close in H3. assumption.
+ simpl. simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
+ simpl in Hsize. repeat rewrite size_close in Hsize. lia.
+ inversion Hlc; subst. specialize (H4 x). rewrite open_close in H4. assumption.
+ simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× simpl in Hsize. repeat rewrite size_close in Hsize. lia.
× inversion Hlc; subst. specialize (H3 x). rewrite open_close in H3. assumption.
× simpl. simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
× simpl in Hsize. repeat rewrite size_close in Hsize. lia.
× inversion Hlc; subst. specialize (H4 x). rewrite open_close in H4. assumption.
× simpl. simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
Qed.
End Ind0.
n (t:term)
(Hsize: size t < n) (Hlc: lc t) (e: env A) (Hfv: fv t [<=] dom e)
: P e t (term_recurse0 n t Hsize Hlc e Hfv).
Proof.
revert t Hsize Hlc e Hfv.
induction n; intros; [ exfalso; lia | destruct t ].
- exfalso. inversion Hlc.
- apply HVar with (n := S n); auto.
+ simpl in Hfv. fsetdec.
+ simpl.
assert (∀ ox (Heq: get x e = ox),
ox =
Some
(match ox as o return (get x e = o → A) with
| Some a ⇒ fun _ : get x e = Some a ⇒ a
| None ⇒ fun Heq : get x e = None ⇒ term_recurse0_subproof1 x e Hfv Heq
end Heq)) as H.
{ intros ox Heq. destruct ox.
+ reflexivity.
+ exfalso. apply get_notin_dom in Heq. simpl in Hfv. fsetdec.
}
apply H.
- simpl. destruct (atom_fresh (dom e)) as [x Fr].
assert (x `notin` fv t2) as Hfv2.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t2 x); [| assumption; clear Hfv2]; intros.
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t2 (Var x))) (Var x)) (open t2 (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
rewrite open_close.
unshelve (eapply HLet with (n := S n); auto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst; assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. rewrite size_close in Hsize. lia.
+ inversion Hlc. subst.
specialize (H2 x). rewrite open_close in H2. assumption.
+ simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× simpl in Hsize. rewrite size_close in Hsize. lia.
× inversion Hlc. subst.
specialize (H2 x). rewrite open_close in H2. assumption.
× simpl. simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
- simpl. destruct (atom_fresh (dom e)) as [x Fr].
assert (x `notin` fv t) as Hfv0.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t x); [| assumption; clear Hfv0]; intros.
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t (Var x))) (Var x)) (open t (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
rewrite open_close.
unshelve (eapply HLam with (n := S n); auto).
+ simpl in Hsize. rewrite size_close in Hsize. lia.
+ inversion Hlc; subst. specialize (H0 x). rewrite open_close in H0. assumption.
+ simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× simpl in Hsize. rewrite size_close in Hsize. lia.
× inversion Hlc; subst. specialize (H0 x). rewrite open_close in H0. assumption.
× simpl. simpl in Hfv. rewrite fv_close in Hfv. fsetdec.
- unshelve (eapply HApp with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
- apply HUnit with (n := S n). assumption.
+ auto.
+ simpl. auto.
- unshelve (eapply HPair with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HFst with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HSnd with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HInjL with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- unshelve (eapply HInjR with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
- simpl. destruct (atom_fresh (dom e)) as [x Fr].
assert (x `notin` fv t2) as Hfv2.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t2 x); [| assumption; clear Hfv2]; intros.
assert (x `notin` fv t3) as Hfv3.
{ simpl in Hfv. fsetdec. }
revert Hsize Hlc Hfv.
rewrite <- (close_open t3 x); [| assumption; clear Hfv3]; intros.
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t2 (Var x))) (Var x)) (open t2 (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
erewrite (term_recurse0_proof_irrelevant n n (open (close x (open t3 (Var x))) (Var x)) (open t3 (Var x)) (open_close _ _) _ _ _ _ _ _ eq_refl).
repeat rewrite open_close.
unshelve (eapply HMatch with (n := S n); eauto).
+ simpl in Hsize. lia.
+ inversion Hlc; subst. assumption.
+ simpl in Hfv. fsetdec.
+ simpl in Hsize. repeat rewrite size_close in Hsize. lia.
+ inversion Hlc; subst. specialize (H3 x). rewrite open_close in H3. assumption.
+ simpl. simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
+ simpl in Hsize. repeat rewrite size_close in Hsize. lia.
+ inversion Hlc; subst. specialize (H4 x). rewrite open_close in H4. assumption.
+ simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
+ apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× simpl in Hsize. repeat rewrite size_close in Hsize. lia.
× inversion Hlc; subst. specialize (H3 x). rewrite open_close in H3. assumption.
× simpl. simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
× simpl in Hsize. repeat rewrite size_close in Hsize. lia.
× inversion Hlc; subst. specialize (H4 x). rewrite open_close in H4. assumption.
× simpl. simpl in Hfv. repeat rewrite fv_close in Hfv. fsetdec.
Qed.
End Ind0.
Definition term_recurse (e: env A) (t: term) (Hlc: lc t) (Hfv: fv t [<=] dom e) : A.
Proof.
apply (term_recurse0 (S (size t)) t) with (e := e).
- abstract lia.
- assumption.
- assumption.
Defined.
Proof.
apply (term_recurse0 (S (size t)) t) with (e := e).
- abstract lia.
- assumption.
- assumption.
Defined.
The recursor does not depend on the proof terms in Prop.
Lemma term_recurse_proof_irrelevant
(e1 e2: env A) (Heq_env: e1 = e2)
(t1 t2: term) (Heq: t1 = t2)
(Hlc1: lc t1) (Hlc2: lc t2)
(Hfv1: fv t1 [<=] dom e1) (Hfv2: fv t2 [<=] dom e2) :
term_recurse e1 t1 Hlc1 Hfv1 = term_recurse e2 t2 Hlc2 Hfv2.
Proof.
unfold term_recurse.
apply term_recurse0_proof_irrelevant; assumption.
Qed.
(e1 e2: env A) (Heq_env: e1 = e2)
(t1 t2: term) (Heq: t1 = t2)
(Hlc1: lc t1) (Hlc2: lc t2)
(Hfv1: fv t1 [<=] dom e1) (Hfv2: fv t2 [<=] dom e2) :
term_recurse e1 t1 Hlc1 Hfv1 = term_recurse e2 t2 Hlc2 Hfv2.
Proof.
unfold term_recurse.
apply term_recurse0_proof_irrelevant; assumption.
Qed.
Unfolding lemma for the recursor.
Lemma term_recurse_equations (e: env A) (t: term) (Hlc: lc t) (Hfv: fv t [<=] dom e) :
match t with
| BVar _ ⇒ False
| Var x ⇒ ∃ a, get x e = Some a ∧ term_recurse e t Hlc Hfv = fVar e x a
| Let t1 t2 ⇒
∃ x (Hx: x `notin` dom e) t2' (Heq: t2 = close x t2')
(Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e)
(Hlc2: lc t2') (Hfv2: fv t2' [<=] add x (dom e)),
term_recurse e t Hlc Hfv =
let a1 := term_recurse e t1 Hlc1 Hfv1 in
let a2 := term_recurse (x ¬ fLetArg e t1 a1 ++ e) t2' Hlc2 Hfv2 in
fLet e t1 a1 x (open t2 (Var x)) a2
| Lam t1 ⇒
∃ x (Hx: x `notin` dom e) t1' (Heq: t1 = close x t1')
(Hlc1: lc t1') (Hfv1: fv t1' [<=] add x (dom e)),
term_recurse e t Hlc Hfv =
fLam e x t1' (term_recurse (x ¬ fLamArg e ++ e) t1' Hlc1 Hfv1)
| App t1 t2 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e),
term_recurse e t Hlc Hfv =
fApp e t1 (term_recurse e t1 Hlc1 Hfv1) t2 (term_recurse e t2 Hlc2 Hfv2)
| Unit ⇒ term_recurse e t Hlc Hfv = fUnit e
| Pair t1 t2 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e),
term_recurse e t Hlc Hfv =
fPair e t1 (term_recurse e t1 Hlc1 Hfv1) t2 (term_recurse e t2 Hlc2 Hfv2)
| Fst t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fFst e t1 (term_recurse e t1 Hlc1 Hfv1)
| Snd t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fSnd e t1 (term_recurse e t1 Hlc1 Hfv1)
| InjL t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fInjL e t1 (term_recurse e t1 Hlc1 Hfv1)
| InjR t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fInjR e t1 (term_recurse e t1 Hlc1 Hfv1)
| Match t0 t1 t2 ⇒
∃ x1 (Hx1: x1 `notin` dom e) t1' (Heq: t1 = close x1 t1')
x2 (Hx2: x2 `notin` dom e) t2' (Heq: t2 = close x2 t2')
(Hlc0: lc t0) (Hfv0: fv t0 [<=] dom e)
(Hlc1: lc t1') (Hfv1: fv t1' [<=] add x1 (dom e))
(Hlc2: lc t2') (Hfv2: fv t2' [<=] add x2 (dom e)),
term_recurse e t Hlc Hfv =
let a0 := term_recurse e t0 Hlc0 Hfv0 in
let a1 := term_recurse (x1 ¬ fMatchArg1 e t0 a0 ++ e) t1' Hlc1 Hfv1 in
let a2 := term_recurse (x2 ¬ fMatchArg2 e t0 a0 ++ e) t2' Hlc2 Hfv2 in
fMatch e t0 a0 x1 t1' a1 x2 t2' a2
end.
Proof.
destruct t.
- inversion Hlc.
- case_eq (get x e); intros.
+ ∃ a. split; [ reflexivity |].
unfold term_recurse. simpl. f_equal.
assert (∀ y,
y = get x e →
∀ (Heq: get x e = y),
match y as o return (get x e = o → A) with
| Some a0 ⇒ fun _ : get x e = Some a0 ⇒ a0
| None ⇒ fun Heq : get x e = None ⇒ term_recurse0_subproof1 x e Hfv Heq
end Heq = a).
{ intros y Hy Heq. destruct y; congruence. }
apply (H0 (get x e) eq_refl).
+ exfalso. apply get_notin_dom in H. simpl in Hfv. fsetdec.
- case_eq (atom_fresh (dom e)); intros x Fr Heqx.
assert (t2 = close x (open t2 (Var x))) as Heq.
{ simpl in Hfv. rewrite close_open; auto. }
assert (lc t1 ∧ lc (open t2 (Var x))) as [Hlc1 Hlc2].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e ∧ fv (open t2 (Var x)) [<=] add x (dom e)) as [Hfv1 Hfv2].
{ simpl in Hfv. split. fsetdec. rewrite fv_open_upper. simpl. fsetdec. }
∃ x, Fr, (open t2 (Var x)), Heq, Hlc1, Hfv1, Hlc2, Hfv2.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) (open t2 (Var x)) (open t2 (Var x)) eq_refl
_ _ _ _
_ (x ¬ fLetArg e t1 _ ++ e) _
_ _).
unfold term_recurse. simpl. rewrite Heqx. f_equal.
Unshelve.
+ simpl. rewrite Heqx. reflexivity.
- case_eq (atom_fresh (dom e)); intros x Fr Heqx.
assert (t = close x (open t (Var x))) as Heq.
{ simpl in Hfv. rewrite close_open; auto. }
assert (lc (open t (Var x))) as Hlc1.
{ inversion Hlc; subst. auto. }
assert (fv (open t (Var x)) [<=] add x (dom e)) as Hfv1.
{ simpl in Hfv. rewrite fv_open_upper. simpl. fsetdec. }
∃ x, Fr, (open t (Var x)), Heq, Hlc1, Hfv1.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) (open t (Var x)) (open t (Var x)) eq_refl
_ _ _ _
_ (x ¬ fLamArg e ++ e) _
_ _).
unfold term_recurse. simpl. rewrite Heqx. f_equal.
Unshelve.
+ reflexivity.
- assert (lc t1 ∧ lc t2) as [Hlc1 Hlc2].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e ∧ fv t2 [<=] dom e) as [Hfv1 Hfv2].
{ simpl in Hfv. split; fsetdec. }
∃ Hlc1, Hfv1, Hlc2, Hfv2.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t2 t2 eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- reflexivity.
- assert (lc t1 ∧ lc t2) as [Hlc1 Hlc2].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e ∧ fv t2 [<=] dom e) as [Hfv1 Hfv2].
{ simpl in Hfv. split; fsetdec. }
∃ Hlc1, Hfv1, Hlc2, Hfv2.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t2 t2 eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- case_eq (atom_fresh (dom e)); intros x Fr Heqx.
assert (t2 = close x (open t2 (Var x))) as Heq2.
{ simpl in Hfv. rewrite close_open; fsetdec. }
assert (t3 = close x (open t3 (Var x))) as Heq3.
{ simpl in Hfv. rewrite close_open; fsetdec. }
assert (lc t1 ∧ lc (open t2 (Var x)) ∧ lc (open t3 (Var x))) as [Hlc1 [Hlc2 Hlc3]].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e
∧ fv (open t2 (Var x)) [<=] add x (dom e)
∧ fv (open t3 (Var x)) [<=] add x (dom e))
as [Hfv1 [Hfv2 Hfv3]].
{ simpl in Hfv. split. fsetdec. split; rewrite fv_open_upper; simpl; fsetdec. }
∃ x, Fr, (open t2 (Var x)), Heq2, x, Fr, (open t3 (Var x)), Heq3,
Hlc1, Hfv1, Hlc2, Hfv2, Hlc3, Hfv3.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2 + size t3)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2 + size t3)) (open t2 (Var x)) (open t2 (Var x)) eq_refl
_ _ _ _
_ (x ¬ fMatchArg1 e t1 _ ++ e) _
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2 + size t3)) (open t3 (Var x)) (open t3 (Var x)) eq_refl
_ _ _ _
_ (x ¬ fMatchArg2 e t1 _ ++ e) _
_ _).
unfold term_recurse. simpl. rewrite Heqx. f_equal.
Unshelve.
+ simpl. rewrite Heqx. reflexivity.
+ simpl. rewrite Heqx. reflexivity.
Qed.
Section Ind.
match t with
| BVar _ ⇒ False
| Var x ⇒ ∃ a, get x e = Some a ∧ term_recurse e t Hlc Hfv = fVar e x a
| Let t1 t2 ⇒
∃ x (Hx: x `notin` dom e) t2' (Heq: t2 = close x t2')
(Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e)
(Hlc2: lc t2') (Hfv2: fv t2' [<=] add x (dom e)),
term_recurse e t Hlc Hfv =
let a1 := term_recurse e t1 Hlc1 Hfv1 in
let a2 := term_recurse (x ¬ fLetArg e t1 a1 ++ e) t2' Hlc2 Hfv2 in
fLet e t1 a1 x (open t2 (Var x)) a2
| Lam t1 ⇒
∃ x (Hx: x `notin` dom e) t1' (Heq: t1 = close x t1')
(Hlc1: lc t1') (Hfv1: fv t1' [<=] add x (dom e)),
term_recurse e t Hlc Hfv =
fLam e x t1' (term_recurse (x ¬ fLamArg e ++ e) t1' Hlc1 Hfv1)
| App t1 t2 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e),
term_recurse e t Hlc Hfv =
fApp e t1 (term_recurse e t1 Hlc1 Hfv1) t2 (term_recurse e t2 Hlc2 Hfv2)
| Unit ⇒ term_recurse e t Hlc Hfv = fUnit e
| Pair t1 t2 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e),
term_recurse e t Hlc Hfv =
fPair e t1 (term_recurse e t1 Hlc1 Hfv1) t2 (term_recurse e t2 Hlc2 Hfv2)
| Fst t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fFst e t1 (term_recurse e t1 Hlc1 Hfv1)
| Snd t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fSnd e t1 (term_recurse e t1 Hlc1 Hfv1)
| InjL t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fInjL e t1 (term_recurse e t1 Hlc1 Hfv1)
| InjR t1 ⇒
∃ (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e),
term_recurse e t Hlc Hfv = fInjR e t1 (term_recurse e t1 Hlc1 Hfv1)
| Match t0 t1 t2 ⇒
∃ x1 (Hx1: x1 `notin` dom e) t1' (Heq: t1 = close x1 t1')
x2 (Hx2: x2 `notin` dom e) t2' (Heq: t2 = close x2 t2')
(Hlc0: lc t0) (Hfv0: fv t0 [<=] dom e)
(Hlc1: lc t1') (Hfv1: fv t1' [<=] add x1 (dom e))
(Hlc2: lc t2') (Hfv2: fv t2' [<=] add x2 (dom e)),
term_recurse e t Hlc Hfv =
let a0 := term_recurse e t0 Hlc0 Hfv0 in
let a1 := term_recurse (x1 ¬ fMatchArg1 e t0 a0 ++ e) t1' Hlc1 Hfv1 in
let a2 := term_recurse (x2 ¬ fMatchArg2 e t0 a0 ++ e) t2' Hlc2 Hfv2 in
fMatch e t0 a0 x1 t1' a1 x2 t2' a2
end.
Proof.
destruct t.
- inversion Hlc.
- case_eq (get x e); intros.
+ ∃ a. split; [ reflexivity |].
unfold term_recurse. simpl. f_equal.
assert (∀ y,
y = get x e →
∀ (Heq: get x e = y),
match y as o return (get x e = o → A) with
| Some a0 ⇒ fun _ : get x e = Some a0 ⇒ a0
| None ⇒ fun Heq : get x e = None ⇒ term_recurse0_subproof1 x e Hfv Heq
end Heq = a).
{ intros y Hy Heq. destruct y; congruence. }
apply (H0 (get x e) eq_refl).
+ exfalso. apply get_notin_dom in H. simpl in Hfv. fsetdec.
- case_eq (atom_fresh (dom e)); intros x Fr Heqx.
assert (t2 = close x (open t2 (Var x))) as Heq.
{ simpl in Hfv. rewrite close_open; auto. }
assert (lc t1 ∧ lc (open t2 (Var x))) as [Hlc1 Hlc2].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e ∧ fv (open t2 (Var x)) [<=] add x (dom e)) as [Hfv1 Hfv2].
{ simpl in Hfv. split. fsetdec. rewrite fv_open_upper. simpl. fsetdec. }
∃ x, Fr, (open t2 (Var x)), Heq, Hlc1, Hfv1, Hlc2, Hfv2.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) (open t2 (Var x)) (open t2 (Var x)) eq_refl
_ _ _ _
_ (x ¬ fLetArg e t1 _ ++ e) _
_ _).
unfold term_recurse. simpl. rewrite Heqx. f_equal.
Unshelve.
+ simpl. rewrite Heqx. reflexivity.
- case_eq (atom_fresh (dom e)); intros x Fr Heqx.
assert (t = close x (open t (Var x))) as Heq.
{ simpl in Hfv. rewrite close_open; auto. }
assert (lc (open t (Var x))) as Hlc1.
{ inversion Hlc; subst. auto. }
assert (fv (open t (Var x)) [<=] add x (dom e)) as Hfv1.
{ simpl in Hfv. rewrite fv_open_upper. simpl. fsetdec. }
∃ x, Fr, (open t (Var x)), Heq, Hlc1, Hfv1.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) (open t (Var x)) (open t (Var x)) eq_refl
_ _ _ _
_ (x ¬ fLamArg e ++ e) _
_ _).
unfold term_recurse. simpl. rewrite Heqx. f_equal.
Unshelve.
+ reflexivity.
- assert (lc t1 ∧ lc t2) as [Hlc1 Hlc2].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e ∧ fv t2 [<=] dom e) as [Hfv1 Hfv2].
{ simpl in Hfv. split; fsetdec. }
∃ Hlc1, Hfv1, Hlc2, Hfv2.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t2 t2 eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- reflexivity.
- assert (lc t1 ∧ lc t2) as [Hlc1 Hlc2].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e ∧ fv t2 [<=] dom e) as [Hfv1 Hfv2].
{ simpl in Hfv. split; fsetdec. }
∃ Hlc1, Hfv1, Hlc2, Hfv2.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2)) t2 t2 eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- assert (lc t) as Hlc1.
{ inversion Hlc; subst. auto. }
∃ Hlc1, Hfv.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t)) t t eq_refl
_ _ _ _
e e eq_refl
_ _).
reflexivity.
- case_eq (atom_fresh (dom e)); intros x Fr Heqx.
assert (t2 = close x (open t2 (Var x))) as Heq2.
{ simpl in Hfv. rewrite close_open; fsetdec. }
assert (t3 = close x (open t3 (Var x))) as Heq3.
{ simpl in Hfv. rewrite close_open; fsetdec. }
assert (lc t1 ∧ lc (open t2 (Var x)) ∧ lc (open t3 (Var x))) as [Hlc1 [Hlc2 Hlc3]].
{ inversion Hlc; subst. auto. }
assert (fv t1 [<=] dom e
∧ fv (open t2 (Var x)) [<=] add x (dom e)
∧ fv (open t3 (Var x)) [<=] add x (dom e))
as [Hfv1 [Hfv2 Hfv3]].
{ simpl in Hfv. split. fsetdec. split; rewrite fv_open_upper; simpl; fsetdec. }
∃ x, Fr, (open t2 (Var x)), Heq2, x, Fr, (open t3 (Var x)), Heq3,
Hlc1, Hfv1, Hlc2, Hfv2, Hlc3, Hfv3.
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2 + size t3)) t1 t1 eq_refl
_ _ _ _
e e eq_refl
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2 + size t3)) (open t2 (Var x)) (open t2 (Var x)) eq_refl
_ _ _ _
_ (x ¬ fMatchArg1 e t1 _ ++ e) _
_ _).
unfold term_recurse at 2.
erewrite
(term_recurse0_proof_irrelevant
_ (S (size t1 + size t2 + size t3)) (open t3 (Var x)) (open t3 (Var x)) eq_refl
_ _ _ _
_ (x ¬ fMatchArg2 e t1 _ ++ e) _
_ _).
unfold term_recurse. simpl. rewrite Heqx. f_equal.
Unshelve.
+ simpl. rewrite Heqx. reflexivity.
+ simpl. rewrite Heqx. reflexivity.
Qed.
Section Ind.
Arguments of the induction principle.
Context (P: ∀ (e: env A) (t: term) (a: A), Prop)
(HVar: ∀ (e: env A) x (Hx: x `in` dom e)
(Hlc: lc (Var x))
(Hfv: fv (Var x) [<=] dom e)
(a: A) (Hget: get x e = Some a),
P e (Var x) (fVar e x a)
)
(HLet: ∀ (e: env A) x (Hx: x `notin` dom e),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x (dom e)) a2
(Heq2: term_recurse (x ¬ fLetArg e t1 a1 ++ e) t2 Hlc2 Hfv2 = a2)
(IH2: P (x ¬ fLetArg e t1 a1 ++ e) t2 a2),
∀ (Hlc: lc (Let t1 (close x t2)))
(Hfv: fv (Let t1 (close x t2)) [<=] dom e),
P e (Let t1 (close x t2)) (fLet e t1 a1 x t2 a2)
)
(HLam: ∀ (e: env A) x (Hx: x `notin` dom e),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] add x (dom e)) a1
(Heq1: term_recurse (x ¬ fLamArg e ++ e) t1 Hlc1 Hfv1 = a1)
(IH1: P (x ¬ fLamArg e ++ e) t1 a1),
∀ (Hlc: lc (Lam (close x t1)))
(Hfv: fv (Lam (close x t1)) [<=] dom e),
P e (Lam (close x t1)) (fLam e x t1 a1)
)
(HApp: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse e t2 Hlc2 Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hlc: lc (App t1 t2))
(Hfv: fv (App t1 t2) [<=] dom e),
P e (App t1 t2) (fApp e t1 a1 t2 a2)
)
(HUnit: ∀ (e: env A) (Hlc: lc Unit) (Hfv: fv Unit [<=] dom e),
P e Unit (fUnit e)
)
(HPair: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse e t2 Hlc2 Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hlc: lc (Pair t1 t2))
(Hfv: fv (Pair t1 t2) [<=] dom e),
P e (Pair t1 t2) (fPair e t1 a1 t2 a2)
)
(HFst: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (Fst t1)) (Hfv: fv (Fst t1) [<=] dom e),
P e (Fst t1) (fFst e t1 a1)
)
(HSnd: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (Snd t1)) (Hfv: fv (Snd t1) [<=] dom e),
P e (Snd t1) (fSnd e t1 a1)
)
(HInjL: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (InjL t1)) (Hfv: fv (InjL t1) [<=] dom e),
P e (InjL t1) (fInjL e t1 a1)
)
(HInjR: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (InjR t1)) (Hfv: fv (InjR t1) [<=] dom e),
P e (InjR t1) (fInjR e t1 a1)
)
(HMatch: ∀ (e: env A) x2 (Hx2: x2 `notin` dom e) x3 (Hx3: x3 `notin` dom e),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x2 (dom e)) a2
(Heq2: term_recurse (x2 ¬ fMatchArg1 e t1 a1 ++ e) t2 Hlc2 Hfv2 = a2)
(IH2: P (x2 ¬ fMatchArg1 e t1 a1 ++ e) t2 a2),
∀ t3 (Hlc3: lc t3) (Hfv3: fv t3 [<=] add x3 (dom e)) a3
(Heq3: term_recurse (x3 ¬ fMatchArg2 e t1 a1 ++ e) t3 Hlc3 Hfv3 = a3)
(IH3: P (x3 ¬ fMatchArg2 e t1 a1 ++ e) t3 a3),
∀ (Hlc: lc (Match t1 (close x2 t2) (close x3 t3)))
(Hfv: fv (Match t1 (close x2 t2) (close x3 t3)) [<=] dom e),
P e (Match t1 (close x2 t2) (close x3 t3))
(fMatch e t1 a1 x2 t2 a2 x3 t3 a3)
)
.
(HVar: ∀ (e: env A) x (Hx: x `in` dom e)
(Hlc: lc (Var x))
(Hfv: fv (Var x) [<=] dom e)
(a: A) (Hget: get x e = Some a),
P e (Var x) (fVar e x a)
)
(HLet: ∀ (e: env A) x (Hx: x `notin` dom e),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x (dom e)) a2
(Heq2: term_recurse (x ¬ fLetArg e t1 a1 ++ e) t2 Hlc2 Hfv2 = a2)
(IH2: P (x ¬ fLetArg e t1 a1 ++ e) t2 a2),
∀ (Hlc: lc (Let t1 (close x t2)))
(Hfv: fv (Let t1 (close x t2)) [<=] dom e),
P e (Let t1 (close x t2)) (fLet e t1 a1 x t2 a2)
)
(HLam: ∀ (e: env A) x (Hx: x `notin` dom e),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] add x (dom e)) a1
(Heq1: term_recurse (x ¬ fLamArg e ++ e) t1 Hlc1 Hfv1 = a1)
(IH1: P (x ¬ fLamArg e ++ e) t1 a1),
∀ (Hlc: lc (Lam (close x t1)))
(Hfv: fv (Lam (close x t1)) [<=] dom e),
P e (Lam (close x t1)) (fLam e x t1 a1)
)
(HApp: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse e t2 Hlc2 Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hlc: lc (App t1 t2))
(Hfv: fv (App t1 t2) [<=] dom e),
P e (App t1 t2) (fApp e t1 a1 t2 a2)
)
(HUnit: ∀ (e: env A) (Hlc: lc Unit) (Hfv: fv Unit [<=] dom e),
P e Unit (fUnit e)
)
(HPair: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] dom e) a2
(Heq2: term_recurse e t2 Hlc2 Hfv2 = a2)
(IH2: P e t2 a2),
∀ (Hlc: lc (Pair t1 t2))
(Hfv: fv (Pair t1 t2) [<=] dom e),
P e (Pair t1 t2) (fPair e t1 a1 t2 a2)
)
(HFst: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (Fst t1)) (Hfv: fv (Fst t1) [<=] dom e),
P e (Fst t1) (fFst e t1 a1)
)
(HSnd: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (Snd t1)) (Hfv: fv (Snd t1) [<=] dom e),
P e (Snd t1) (fSnd e t1 a1)
)
(HInjL: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (InjL t1)) (Hfv: fv (InjL t1) [<=] dom e),
P e (InjL t1) (fInjL e t1 a1)
)
(HInjR: ∀ (e: env A),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ (Hlc: lc (InjR t1)) (Hfv: fv (InjR t1) [<=] dom e),
P e (InjR t1) (fInjR e t1 a1)
)
(HMatch: ∀ (e: env A) x2 (Hx2: x2 `notin` dom e) x3 (Hx3: x3 `notin` dom e),
∀ t1 (Hlc1: lc t1) (Hfv1: fv t1 [<=] dom e) a1
(Heq1: term_recurse e t1 Hlc1 Hfv1 = a1)
(IH1: P e t1 a1),
∀ t2 (Hlc2: lc t2) (Hfv2: fv t2 [<=] add x2 (dom e)) a2
(Heq2: term_recurse (x2 ¬ fMatchArg1 e t1 a1 ++ e) t2 Hlc2 Hfv2 = a2)
(IH2: P (x2 ¬ fMatchArg1 e t1 a1 ++ e) t2 a2),
∀ t3 (Hlc3: lc t3) (Hfv3: fv t3 [<=] add x3 (dom e)) a3
(Heq3: term_recurse (x3 ¬ fMatchArg2 e t1 a1 ++ e) t3 Hlc3 Hfv3 = a3)
(IH3: P (x3 ¬ fMatchArg2 e t1 a1 ++ e) t3 a3),
∀ (Hlc: lc (Match t1 (close x2 t2) (close x3 t3)))
(Hfv: fv (Match t1 (close x2 t2) (close x3 t3)) [<=] dom e),
P e (Match t1 (close x2 t2) (close x3 t3))
(fMatch e t1 a1 x2 t2 a2 x3 t3 a3)
)
.
Induction principle.
Lemma term_induction (e: env A) (t:term) (Hlc: lc t) (Hfv: fv t [<=] dom e)
: P e t (term_recurse e t Hlc Hfv).
Proof.
unfold term_recurse.
apply term_induction0 with (n := S (size t)); intros.
- apply HVar; auto.
- eapply HLet; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
- eapply HLam; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HApp; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
- eapply HUnit; eauto.
- eapply HPair; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
- eapply HFst; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HSnd; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HInjL; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HInjR; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HMatch; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
× assumption.
× assumption.
Qed.
End Ind.
End Ind.
: P e t (term_recurse e t Hlc Hfv).
Proof.
unfold term_recurse.
apply term_induction0 with (n := S (size t)); intros.
- apply HVar; auto.
- eapply HLet; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
- eapply HLam; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HApp; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
- eapply HUnit; eauto.
- eapply HPair; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
- eapply HFst; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HSnd; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HInjL; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HInjR; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
- eapply HMatch; eauto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
+ subst. apply term_recurse0_proof_irrelevant; auto.
Unshelve.
× assumption.
× assumption.
× assumption.
× assumption.
× assumption.
× assumption.
Qed.
End Ind.
End Ind.