Julio Cesar FERREIRA1,2,4 Olivier LE MEUR 2 Christine GUILLEMOT 1 Eduardo A. B. DA SILVA 3 Gilberto A. CARRIJO 4
1INRIA, France
2University of Rennes 1, France
3Federal University of Rio de Janeiro (UFRJ), Brazil
4Federal University of Uberlandia (UFU), Brazil
ICIP (2014)
This paper describes a new single-image super-resolution algorithm based on sparse representations with image structure constraints. A structure tensor based regularization is introduced in the sparse approximation in order to improve the sharpness of edges. The new formulation allows reducing the ringing artefacts which can be observed around edges reconstructed by existing methods. The proposed method, named Sharper Edges based Adaptive Sparse Domain Selection (SE-ASDS), achieves much better results than many state-of-the-art algorithms, showing significant improvements in terms of PSNR (average of 29.63, previously 29.19), SSIM (average of 0.8559, previously 0.8471) and visual quality perception.
LR              Nearest                  Dong et al.                 Our Results     
The training dataset is composed of 5 images and testing dataset is composed of 10 pictures. You can download these dataset below.
Images | Daubechies et al. | Dai et al. | Yang et al. | Marquina et al. | Dong et al. | Our results |
Girl | 32.93 0.8102 | 31.94 0.7704 | 32.51 0.7912 | 31.21 0.7878 | 33.54 0.8242 | 33.56 0.8252 |
Parrots | 28.78 0.8845 | 27.71 0.8682 | 27.98 0.8665 | 27.59 0.8856 | 30.00 0.9093 | 30.29 0.9136 |
Butterfly | 25.16 0.8336 | 25.19 0.8623 | 23.73 0.7942 | 26.60 0.9036 | 27.34 0.9047 | 28.48 0.9236 |
Leaves | 24.59 0.8310 | 24.34 0.8372 | 24.35 0.8170 | 24.58 0.8878 | 26.80 0.9058 | 27.69 0.9261 |
Parthenon | 26.32 0.7135 | 25.87 0.6791 | 24.08 0.6305 | 25.89 0.7163 | 26.83 0.7349 | 27.05 0.7446 |
Flower | 28.16 0.8120 | 27.50 0.7800 | 27.76 0.7929 | 27.38 0.8111 | 29.19 0.8480 | 29.29 0.8511 |
Hat | 29.92 0.8438 | 29.68 0.8389 | 29.65 0.8362 | 29.19 0.8569 | 30.93 0.8707 | 31.51 0.8805 |
Raccoon | 28.80 0.7549 | 27.96 0.6904 | 28.49 0.7273 | 27.53 0.7076 | 29.24 0.7677 | 29.27 0.7686 |
Bike | 23.48 0.7438 | 23.31 0.7219 | 23.20 0.7188 | 23.61 0.7567 | 24.62 0.7962 | 24.97 0.8098 |
Plants | 31.87 0.8792 | 31.45 0.8617 | 31.48 0.8698 | 31.28 0.8784 | 33.47 0.9095 | 34.17 0.9163 |
Average | 28.03 0.8115 | 27.49 0.7910 | 27.69 0.7954 | 27.49 0.8190 | 29.19 0.8471 | 29.63 0.8559 |
@inproceedings{ferreira14single, title = {{Single image super-resolution using sparse representations with structure constraints}}, author = {Ferreira, Julio Cesar and Le Meur, Olivier and Guillemot, Christine and Da Silva, Eduardo Antonio Barros and Carrijo, Gilberto Arantes}, keywords = {super-resolution, sparse representations, structure tensors}, language = {English}, booktitle = {{IEEE International Conference on Image Processing}}, address = {Paris, France}, audience = {international }, year = {2014}, month = Oct, }