Single image super-resolution using sparse representations with structure constraints

Julio Cesar FERREIRA1,2,4    Olivier LE MEUR 2   Christine GUILLEMOT 1   Eduardo A. B. DA SILVA 3   Gilberto A. CARRIJO 4

1INRIA, France
2University of Rennes 1, France
3Federal University of Rio de Janeiro (UFRJ), Brazil
4Federal University of Uberlandia (UFU), Brazil

ICIP (2014)

Back

Abstract

This paper describes a new single-image super-resolution algorithm based on sparse representations with image structure constraints. A structure tensor based regularization is introduced in the sparse approximation in order to improve the sharpness of edges. The new formulation allows reducing the ringing artefacts which can be observed around edges reconstructed by existing methods. The proposed method, named Sharper Edges based Adaptive Sparse Domain Selection (SE-ASDS), achieves much better results than many state-of-the-art algorithms, showing significant improvements in terms of PSNR (average of 29.63, previously 29.19), SSIM (average of 0.8559, previously 0.8471) and visual quality perception.

Paper and presentation

Paper [pdf] Poster [pdf]

Materials











LR              Nearest                  Dong et al.                 Our Results     

The training dataset is composed of 5 images and testing dataset is composed of 10 pictures. You can download these dataset below.

[Testing Dataset]

[Training Dataset]

Some Results

The PSNR (dB) and SSIM results (luminance components) of super-resolved HR images.
Images Daubechies et al. Dai et al. Yang et al. Marquina et al. Dong et al. Our results
Girl 32.93 0.8102 31.94 0.7704 32.51 0.7912 31.21 0.7878 33.54 0.8242 33.56 0.8252
Parrots 28.78 0.8845 27.71 0.8682 27.98 0.8665 27.59 0.8856 30.00 0.9093 30.29 0.9136
Butterfly 25.16 0.8336 25.19 0.8623 23.73 0.7942 26.60 0.9036 27.34 0.9047 28.48 0.9236
Leaves 24.59 0.8310 24.34 0.8372 24.35 0.8170 24.58 0.8878 26.80 0.9058 27.69 0.9261
Parthenon 26.32 0.7135 25.87 0.6791 24.08 0.6305 25.89 0.7163 26.83 0.7349 27.05 0.7446
Flower 28.16 0.8120 27.50 0.7800 27.76 0.7929 27.38 0.8111 29.19 0.8480 29.29 0.8511
Hat 29.92 0.8438 29.68 0.8389 29.65 0.8362 29.19 0.8569 30.93 0.8707 31.51 0.8805
Raccoon 28.80 0.7549 27.96 0.6904 28.49 0.7273 27.53 0.7076 29.24 0.7677 29.27 0.7686
Bike 23.48 0.7438 23.31 0.7219 23.20 0.7188 23.61 0.7567 24.62 0.7962 24.97 0.8098
Plants 31.87 0.8792 31.45 0.8617 31.48 0.8698 31.28 0.8784 33.47 0.9095 34.17 0.9163
Average 28.03 0.8115 27.49 0.7910 27.69 0.7954 27.49 0.8190 29.19 0.8471 29.63 0.8559

Citation

Ferreira et al. (2014). Single image super-resolution using sparse representations with structure constraints, ICIP 2014 .
@inproceedings{ferreira14single,
    title = {{Single image super-resolution using sparse representations with structure 
		constraints}},
    author = {Ferreira, Julio Cesar and Le Meur, Olivier and Guillemot, Christine and 
		Da Silva, Eduardo Antonio Barros and Carrijo, Gilberto Arantes},
    keywords = {super-resolution, sparse representations, structure tensors},
    language = {English},
    booktitle = {{IEEE International Conference on Image Processing}},
    address = {Paris, France},
    audience = {international },
    year = {2014},
    month = Oct,
}

Related