B | |
---|---|
[BMS15] | Patricia Bouyer,
Nicolas Markey, and
Ocan Sankur.
Robust Reachability in Timed Automata and Games:
A Game-based Approach.
Theoretical Computer Science 563:43-74. Elsevier, January 2015.
@article{tcs563()-BMS, author = {Bouyer, Patricia and Markey, Nicolas and Sankur, Ocan}, title = {Robust Reachability in Timed Automata and Games: A~Game-based Approach}, publisher = {Elsevier}, journal = {Theoretical Computer Science}, volume = {563}, pages = {43-74}, year = {2015}, month = jan, doi = {10.1016/j.tcs.2014.08.014}, abstract = {Reachability checking is one of the most basic problems in verification. By solving this problem in a game, one can synthesize a strategy that dictates the actions to be performed for ensuring that the target location is reached. In this work, we are interested in synthesizing {"}robust{"} strategies for ensuring reachability of a location in timed automata. By robust, we mean that it must still ensure reachability even when the delays are perturbed by the environment. We model this perturbed semantics as a game between the controller and its environment, and solve the parameterized robust reachability problem: we show that the existence of an upper bound on the perturbations under which there is a strategy reaching a target location is EXPTIME-complete. We also extend our algorithm, with the same complexity, to turn-based timed games, where the successor state is entirely determined by the environment in some locations.}, } |
- 1
- 1
- 1