Coral.RelClosed: relations that relate terms with no free variables
Require Import Definitions.
Require Import Metatheory.
Require Import Env.
Require Import Rel.
Require Import SubstEnv.
Require Import EvalFacts.
Definitions
Definition closed_relL {A: Type} (R: rel (env term) A): Prop :=
∀ e a,
in_rel R e a →
all_env (fun t ⇒ fv t [<=] empty) e.
Add Parametric Morphism A: (@closed_relL A)
with signature (@RelEquiv (env term) A) --> iff
as closed_relL_morphism_equiv.
Proof.
intros R1 R2 H12; split;
intros H e v Hev; apply (H e v); auto; apply (H12 e v); auto.
Qed.
∀ e a,
in_rel R e a →
all_env (fun t ⇒ fv t [<=] empty) e.
Add Parametric Morphism A: (@closed_relL A)
with signature (@RelEquiv (env term) A) --> iff
as closed_relL_morphism_equiv.
Proof.
intros R1 R2 H12; split;
intros H e v Hev; apply (H e v); auto; apply (H12 e v); auto.
Qed.
A relation R satisfies closed_relR if it has on its RHS only
terms with no free variables.
Definition closed_relR {A: Type} (R: rel A term): Prop :=
∀ e a,
in_rel R e a →
fv a [<=] empty.
Add Parametric Morphism A: (@closed_relR A)
with signature (@RelEquiv A term) --> iff
as closed_relR_morphism_equiv.
Proof.
intros R1 R2 H12; split;
intros H e v Hev; apply (H e v); auto; apply (H12 e v); auto.
Qed.
∀ e a,
in_rel R e a →
fv a [<=] empty.
Add Parametric Morphism A: (@closed_relR A)
with signature (@RelEquiv A term) --> iff
as closed_relR_morphism_equiv.
Proof.
intros R1 R2 H12; split;
intros H e v Hev; apply (H e v); auto; apply (H12 e v); auto.
Qed.
A relation R satisfies closed_rel if it has on its LHS only
environments of terms with no free variables and has on its RHS only
terms with no free variables.
Definition closed_rel (R: rel (env term) term) : Prop :=
closed_relL R ∧ closed_relR R.
Add Parametric Morphism: closed_rel
with signature (@RelEquiv (env term) term) --> iff
as closed_morphism_equiv.
Proof.
intros R1 R2 H12; split; intros [H1 H2]; split;
try solve [rewrite H12; assumption | rewrite <- H12; assumption].
Qed.
closed_relL R ∧ closed_relR R.
Add Parametric Morphism: closed_rel
with signature (@RelEquiv (env term) term) --> iff
as closed_morphism_equiv.
Proof.
intros R1 R2 H12; split; intros [H1 H2]; split;
try solve [rewrite H12; assumption | rewrite <- H12; assumption].
Qed.
A relation R satisfies closed_vrel if it has on its LHS and on
its RHS only terms with no free variables.
Definition closed_vrel (R: rel term term): Prop :=
∀ v1 v2,
in_rel R v1 v2 →
fv v1 [<=] empty ∧ fv v2 [<=] empty.
Add Parametric Morphism: closed_vrel
with signature (@RelEquiv term term) --> iff
as closed_vrel_morphism_equiv.
Proof.
intros R1 R2 H12; split;
intros H e v Hev; apply (H e v); auto; apply (H12 e v); auto.
Qed.
Lemma closed_rel_relL R:
closed_rel R → closed_relL R.
Proof.
unfold closed_rel. tauto.
Qed.
Hint Resolve closed_rel_relL : core.
Lemma closed_vrel_relR R:
closed_vrel R → closed_relR R.
Proof.
intros H v1 v2 Hv.
specialize (H _ _ Hv). tauto.
Qed.
Hint Resolve closed_vrel_relR : core.
∀ v1 v2,
in_rel R v1 v2 →
fv v1 [<=] empty ∧ fv v2 [<=] empty.
Add Parametric Morphism: closed_vrel
with signature (@RelEquiv term term) --> iff
as closed_vrel_morphism_equiv.
Proof.
intros R1 R2 H12; split;
intros H e v Hev; apply (H e v); auto; apply (H12 e v); auto.
Qed.
Lemma closed_rel_relL R:
closed_rel R → closed_relL R.
Proof.
unfold closed_rel. tauto.
Qed.
Hint Resolve closed_rel_relL : core.
Lemma closed_vrel_relR R:
closed_vrel R → closed_relR R.
Proof.
intros H v1 v2 Hv.
specialize (H _ _ Hv). tauto.
Qed.
Hint Resolve closed_vrel_relR : core.
Properties of RelBot
Lemma closed_relL_RelBot {A}: @closed_relL A RelBot.
Proof.
intros env a H. destruct H.
Qed.
Lemma closed_relR_RelBot {A}: @closed_relR A RelBot.
Proof.
intros env a H. destruct H.
Qed.
Lemma closed_rel_RelBot: closed_rel RelBot.
Proof.
split; auto using closed_relL_RelBot, closed_relR_RelBot.
Qed.
Lemma closed_vrel_RelBot: closed_vrel RelBot.
Proof.
intros v1 v2 H. destruct H.
Qed.
Properties of RelInter
Lemma closed_relL_RelInter {A: Type} (R1 R2: rel (env term) A):
(closed_relL R1 ∨ closed_relL R2) →
closed_relL (RelInter R1 R2).
Proof.
intros [H|H] env a [H1 H2]; eauto.
Qed.
Lemma closed_relR_RelInter {A: Type} (R1 R2: rel A term):
(closed_relR R1 ∨ closed_relR R2) →
closed_relR (RelInter R1 R2).
Proof.
intros [H|H] env a [H1 H2]; eauto.
Qed.
Lemma closed_rel_RelInter (R1 R2: rel (env term) term):
(closed_rel R1 ∨ closed_rel R2) →
closed_rel (RelInter R1 R2).
Proof.
unfold closed_rel.
intro. split.
- apply closed_relL_RelInter; tauto.
- apply closed_relR_RelInter; tauto.
Qed.
Lemma closed_vrel_RelInter (R1 R2: rel term term):
(closed_vrel R1 ∨ closed_vrel R2) →
closed_vrel (RelInter R1 R2).
Proof.
unfold closed_vrel.
intros [H|H] v1 v2 [Hv1 Hv2]; auto.
Qed.
Properties of RelUnion
Lemma closed_relL_RelUnion {A: Type} (R1 R2: rel (env term) A):
closed_relL R1 →
closed_relL R2 →
closed_relL (RelUnion R1 R2).
Proof.
intros Hwf1 Hwf2 env a [H|H]; eauto.
Qed.
Lemma closed_relR_RelUnion {A: Type} (R1 R2: rel A term):
closed_relR R1 →
closed_relR R2 →
closed_relR (RelUnion R1 R2).
Proof.
intros Hwf1 Hwf2 env a [H|H]; eauto.
Qed.
Lemma closed_rel_RelUnion (R1 R2: rel (env term) term):
closed_rel R1 →
closed_rel R2 →
closed_rel (RelUnion R1 R2).
Proof.
unfold closed_rel. intro. split.
- apply closed_relL_RelUnion; tauto.
- apply closed_relR_RelUnion; tauto.
Qed.
Lemma closed_vrel_RelUnion (R1 R2: rel term term):
closed_vrel R1 →
closed_vrel R2 →
closed_vrel (RelUnion R1 R2).
Proof.
unfold closed_vrel.
intros H1 H2 v1 v2 [H|H]; auto.
Qed.
Properties of RelSelf
Lemma closed_relL_RelSelf t:
closed_relL (RelSelf t).
Proof.
intros e a H. simpl in ×.
apply (all_env_sub good_value); try tauto; auto.
Qed.
Lemma closed_relR_RelSelf t:
closed_relR (RelSelf t).
Proof.
intros e a H. simpl in ×. intuition.
Qed.
Lemma closed_rel_RelSelf t:
closed_rel (RelSelf t).
Proof.
unfold closed_rel. split.
- apply closed_relL_RelSelf.
- apply closed_relR_RelSelf.
Qed.
Properties of RelLet0_strong
Lemma closed_relL_RelLet0_strong (R1: atom → rel (env term) term) (R2: rel (env term) term) x:
closed_relL R2 →
closed_relL (RelLet0_strong R1 R2 x).
Proof.
intros HR2 e a H.
simpl in ×. destruct H as [v [H2 H1]]. eauto.
Qed.
Lemma closed_relR_RelLet0_strong (R1: atom → rel (env term) term) (R2: rel (env term) term) x:
closed_relR (R1 x) →
closed_relR (RelLet0_strong R1 R2 x).
Proof.
intros HR1 e a H.
simpl in ×. destruct H as [v [H2 H1]]. apply HR1 in H1. assumption.
Qed.
Lemma closed_rel_RelLet0_strong (R1: atom → rel (env term) term) (R2: rel (env term) term) x:
closed_rel (R1 x) →
closed_rel R2 →
closed_rel (RelLet0_strong R1 R2 x).
Proof.
unfold closed_rel. intros. split.
- apply closed_relL_RelLet0_strong; tauto.
- apply closed_relR_RelLet0_strong; firstorder.
Qed.
Properties of RelClose
Lemma closed_relL_RelClose {A} S (R: atom → rel (env term) A):
(∀ x, x `notin` S → closed_relL (R x)) →
closed_relL (RelClose S R).
Proof.
intros H e a [x [Hx HR]]. eapply H; eauto.
Qed.
Lemma closed_relR_RelClose {A} S (R: atom → rel (env A) term):
(∀ x, x `notin` S → closed_relR (R x)) →
closed_relR (RelClose S R).
Proof.
intros H e a [x [Hx HR]]. eapply H; eauto.
Qed.
Lemma closed_rel_RelClose S (R: atom → rel (env term) term):
(∀ x, x `notin` S → closed_rel (R x)) →
closed_rel (RelClose S R).
Proof.
unfold closed_rel. intros. split.
- apply closed_relL_RelClose; firstorder.
- apply closed_relR_RelClose; firstorder.
Qed.
Properties of RelLet_strong
Lemma closed_rel_RelLet_strong S (R1: atom → rel (env term) term) (R2: rel (env term) term):
(∀ x, x `notin` S → closed_rel (R1 x)) →
closed_rel R2 →
closed_rel (RelLet_strong S R1 R2).
Proof.
intros H1 H2.
eapply closed_rel_RelClose; eauto.
intros x Hx. eapply closed_rel_RelLet0_strong; eauto.
Qed.
Properties of FUN
Lemma closed_relL_FUN S (R1 R2: rel (env term) term):
closed_relL (FUN S R1 R2).
Proof.
intros e v [Hedom [HGE [HGV H]]].
unfold good_value in HGE.
repeat rewrite all_env_split in HGE.
tauto.
Qed.
Lemma closed_relR_FUN S (R1 R2: rel (env term) term):
closed_relR (FUN S R1 R2).
Proof.
intros e v [Hedom [HGE [HGV H]]].
unfold good_value in HGV. tauto.
Qed.
Lemma closed_rel_FUN S (R1 R2: rel (env term) term):
closed_rel (FUN S R1 R2).
Proof.
split; auto using closed_relL_FUN, closed_relR_FUN.
Qed.
Properties of APP
Lemma closed_relL_APP (R1 R2: rel (env term) term):
closed_relL R2 →
closed_relL (APP R1 R2).
Proof.
intros H2 e v H.
destruct H as [e'' [v1 [v2 [H'' [Hv1 [Hv2 Heval]]]]]].
eauto.
Qed.
Lemma closed_relR_APP (R1 R2: rel (env term) term):
closed_relR R1 →
closed_relR R2 →
closed_relR (APP R1 R2).
Proof.
intros H1 H2 e v H.
destruct H as [e'' [v1 [v2 [H'' [Hv1 [Hv2 Heval]]]]]].
rewrite (eval_fv _ _ Heval). simpl.
apply H1 in Hv1. apply H2 in Hv2.
fsetdec.
Qed.
Lemma closed_rel_APP (R1 R2: rel (env term) term):
closed_rel R1 →
closed_rel R2 →
closed_rel (APP R1 R2).
Proof.
unfold closed_rel. intros. split.
- apply closed_relL_APP; tauto.
- apply closed_relR_APP; tauto.
Qed.
Properties of RelUnitR
Lemma closed_relL_RelUnitR:
closed_relL RelUnitR.
Proof.
intros e v H. destruct v; simpl in H; try contradiction.
eapply all_env_sub; eauto.
Qed.
Lemma closed_relR_RelUnitR:
closed_relR RelUnitR.
Proof.
intros e v H. destruct v; simpl in H; try contradiction. simpl. reflexivity.
Qed.
Lemma closed_rel_RelUnitR:
closed_rel RelUnitR.
Proof.
split; auto using closed_relL_RelUnitR, closed_relR_RelUnitR.
Qed.
Properties of RelPairR
Lemma closed_relL_RelPairR (R1 R2: rel (env term) term):
(closed_relL R1 ∨ closed_relL R2) →
closed_relL (RelPairR R1 R2).
Proof.
intros Hclosed e v H.
simpl in H.
destruct v; try contradiction.
destruct H.
destruct Hclosed; eauto.
Qed.
Lemma closed_relR_RelPairR {A} (R1 R2: rel A term):
closed_relR R1 →
closed_relR R2 →
closed_relR (RelPairR R1 R2).
Proof.
intros H1 H2 e v H.
simpl in H.
destruct v; try contradiction.
destruct H as [HR1 HR2].
apply H1 in HR1. apply H2 in HR2.
simpl. fsetdec.
Qed.
Lemma closed_rel_RelPairR (R1 R2: rel (env term) term):
closed_rel R1 →
closed_rel R2 →
closed_rel (RelPairR R1 R2).
Proof.
unfold closed_rel. intros. split.
- apply closed_relL_RelPairR; tauto.
- apply closed_relR_RelPairR; tauto.
Qed.
Lemma closed_vrel_RelPairR (R1 R2: rel term term):
closed_vrel R1 →
closed_vrel R2 →
closed_vrel (RelPairR R1 R2).
Proof.
unfold closed_vrel.
intros H1 H2 v1 v2 H.
destruct v2; simpl in H; try contradiction.
destruct H as [Hv1 Hv2].
specialize (H1 _ _ Hv1).
specialize (H2 _ _ Hv2).
simpl. intuition auto. fsetdec.
Qed.
Properties of RelPairL
Lemma closed_vrel_RelPairL (R1 R2: rel term term):
closed_vrel R1 →
closed_vrel R2 →
closed_vrel (RelPairL R1 R2).
Proof.
unfold closed_vrel.
intros H1 H2 v1 v2 H.
destruct v1; simpl in H; try contradiction.
destruct H as [Hv1 Hv2].
specialize (H1 _ _ Hv1).
specialize (H2 _ _ Hv2).
simpl. intuition auto. fsetdec.
Qed.
Properties of RelSumR
Lemma closed_relL_RelSumR (R1 R2: rel (env term) term):
closed_relL R1 →
closed_relL R2 →
closed_relL (RelSumR R1 R2).
Proof.
intros H1 H2 e v H.
simpl in H.
destruct v; try contradiction; eauto.
Qed.
Lemma closed_relR_RelSumR {A} (R1 R2: rel A term):
closed_relR R1 →
closed_relR R2 →
closed_relR (RelSumR R1 R2).
Proof.
intros H1 H2 e v H.
simpl in H.
destruct v; try contradiction.
- apply H1 in H. assumption.
- apply H2 in H. assumption.
Qed.
Lemma closed_rel_RelSumR (R1 R2: rel (env term) term):
closed_rel R1 →
closed_rel R2 →
closed_rel (RelSumR R1 R2).
Proof.
unfold closed_rel. intros. split.
- apply closed_relL_RelSumR; tauto.
- apply closed_relR_RelSumR; tauto.
Qed.
Lemma closed_vrel_RelSumR (R1 R2: rel term term):
closed_vrel R1 →
closed_vrel R2 →
closed_vrel (RelSumR R1 R2).
Proof.
unfold closed_vrel.
intros H1 H2 v1 v2 H.
destruct v2; simpl in H; try contradiction; simpl; auto.
Qed.
Properties of RelSumL
Lemma closed_vrel_RelSumL (R1 R2: rel term term):
closed_vrel R1 →
closed_vrel R2 →
closed_vrel (RelSumL R1 R2).
Proof.
unfold closed_vrel.
intros H1 H2 v1 v2 H.
destruct v1; simpl in H; try contradiction; simpl; auto.
Qed.
Properties of RelCompose
Lemma closed_relL_RelCompose (R1: rel (env term) term) (R2: rel term term):
closed_relL R1 →
closed_relL (RelCompose R1 R2).
Proof.
intros H1 e v H.
destruct H as [v0 [He Hv]].
eauto.
Qed.
Lemma closed_relR_RelCompose (R1: rel (env term) term) (R2: rel term term):
closed_relR R2 →
closed_relR (RelCompose R1 R2).
Proof.
intros H2 e v H.
destruct H as [v0 [He Hv]].
apply H2 in Hv. assumption.
Qed.
Lemma closed_rel_RelCompose (R1: rel (env term) term) (R2: rel term term):
closed_relL R1 →
closed_relR R2 →
closed_rel (RelCompose R1 R2).
Proof.
unfold closed_rel. intros. split.
- apply closed_relL_RelCompose; auto.
- apply closed_relR_RelCompose; auto.
Qed.
Lemma closed_vrel_RelCompose (R1 R2: rel term term):
closed_vrel R1 →
closed_vrel R2 →
closed_vrel (RelCompose R1 R2).
Proof.
unfold closed_vrel.
intros H1 H2 v1 v2 [v0 [Hv1 Hv2]].
specialize (H1 _ _ Hv1).
specialize (H2 _ _ Hv2).
intuition auto.
Qed.
Properties of RelInv
Lemma closed_vrel_RelComposeInv (R1: rel (env term) term) (R2: rel (env term) term):
closed_rel R1 →
closed_rel R2 →
closed_vrel (RelCompose (RelInv R1) R2).
Proof.
unfold closed_vrel.
intros [H1 H1'] [H2 H2'] v1 v2 [v0 [Hv1 Hv2]].
specialize (H1' _ _ Hv1).
specialize (H2' _ _ Hv2).
intuition auto.
Qed.
Lemma closed_vrel_RelInv (R: rel term term):
closed_vrel R →
closed_vrel (RelInv R).
Proof.
intros H v1 v2 Hv. specialize (H _ _ Hv). tauto.
Qed.
Lemma good_env_closed e: all_env good_value e → all_env (fun t ⇒ fv t [<=] empty) e.
Proof.
unfold good_value. repeat rewrite all_env_split. tauto.
Qed.
Hint Resolve good_env_closed : core.