
POM: a Virtual Parallel MachineFeaturing Observation MechanismsFr�ed�eric Guidec Yves Mah�eoIRISA IRISACampus de Beaulieu Campus de BeaulieuF-35042 Rennes, France F-35042 Rennes, Franceguidec@irisa.fr maheo@irisa.frWe describe in this paper a Parallel Observablevirtual Machine (POM), which provides a homo-geneous interface upon the communication ker-nels of parallel architectures. POM was designedso as to be ported easily and e�ciently on numer-ous parallel platforms. It provides sophisticatedfeatures for observing distributed executions.1 IntroductionPOM is a Parallel Observable Machine featuringmechanisms for observing distributed applications. Itprovides a homogeneous interface upon the many com-munication kernels available on current parallel archi-tectures, and it can be easily and e�ciently imple-mented on these architectures.POM has not been designed in order to competewith communication interfaces and libraries such asPVM [2], MPI [7] or P4 [3]. These systems mainly aimat easing the task of the programmer of distributedapplications by o�ering a wide variety of communi-cation services (primitives for packing and unpack-ing typed data in messages, notion of communicationswithin groups of processes, XDR coding for exchang-ing data in a heterogeneous network, etc.) and dy-namic task management. Most of the time, such ser-vices are not provided directly by the communicationkernels associated with the operating systems, whichonly o�er basic low level communication primitives(e.g. untyped data exchanges between neighbouringnodes).Implementing services more \comfortable" for theapplication programmer (dynamic task management,packing and unpacking typed data: : :) requires thatcomplex mechanisms be grouped in software layersabove the communication kernels mentionned earlier.Although they e�ectively ease the task of the appli-

cation programmer, these mechanisms are di�cult toimplement and their use is costly. They may turn outto be highly prohibitive in some application domainswhere the seek for performances prevails over the im-mediate comfort of the application programmer.The prior goal of POM is not to o�er numerous ser-vices to the application programmer. It mostly aimsat masking the speci�cities of the various communica-tion kernels of today's machines with no signi�cativedegradation of performances. In that sense, our ap-proach is quite similar to that of projects PICL [5] andPARMACS [4]. However, one of our main prioritieswhile designing POM was to de�ne a model of virtualmachine and to clearly specify the semantics of thecommunications in this model. We also wanted to de-�ne an easily portable machine |i.e. a machine thatcan be ported on a given platform in a short time|and whose implementation can be achieved e�cientlyon many parallel platforms.We also gave POM sophisticated observation mech-anisms. Actually, we consider that any parallel pro-gramming environment should include a set of tools tohelp the programmer design and implement new dis-tributed applications, be it for checking the correct-ness by detecting and removing bugs, or for improv-ing performances. Considering that even the slightestperturbation in the execution of a distributed appli-cation can ruin its analysis, we decided to incorpo-rate observation mechanisms at a low level in POM.Moreover, the observation technique fostered in POMis based on the analysis of execution traces, ratherthan on a direct observation of distributed applica-tions (in which case the observation is achieved insidethe application). The various observation mechanismso�ered by POM can all be enabled or disabled sepa-rately. The intrusion in the distributed applicationsobserved is thus kept as low as possible.

Point-to-point Network

Broadcast Network

Observation Network

20

31

OBSFigure 1: Model of the virtual machine2 The virtual machine2.1 Model of the machinePOM de�nes a model of virtual machine that con-sists of a set of application nodes numbered 0 to N -1.These nodes communicate via two distinct media. The�rst medium is a fully connected network devotedto point-to-point communications. The channels ofthis network are FIFO and reliable (messages are nei-ther lost nor desequenced). The second medium al-lows broadcasting messages. It is also a fully con-nected network with reliable FIFO channels. Withthis medium, a node can send a message simultane-ously on all output channels.By de�ning fully connected networks, we intention-ally avoided considering the actual physical topologyof parallel architectures. This allows for the evolu-tion of modern parallel machines in which messagesare routed more and more e�ciently by the hardware(or by the low level system). The underlying topologythus remains hidden to the programmer.The distinction between the two networks is neces-sary because on many parallel platforms, it is di�cultto ensure at low cost that virtual channels carryingboth point-to-point messages and broadcast messagesare FIFO. Actually, on these platforms, point-to-pointand broadcast communications rely on distinct proto-cols, and sometimes on distinct physical devices too.Besides the application nodes, POM can include acomplementary observation node. When this observeris present, one must consider a third communicationmedium: a network of reliable FIFO channels linkingeach application node to the observer. Through thisobservation medium, communications only occur fromthe application nodes towards the observer.Tasks are managed statically in POM: there mustbe a single process on each node of the virtual ma-chine. However, we consider incorporating lightweight

processes in a future version of POM.2.2 Communication modelThe communication paradigm implemented in POMis that of asynchronous message passing. POM per-mits most of the variations around this kind of com-munication. Communications can be performed inpoint-to-point mode or in broadcast mode. Sends arenon-blocking, that is, the sending process resumes itsexecution as soon as the message to be sent has beentaken in charge by the underlying operating system.Receives can be deterministic (on a given incomingchannel) or non-deterministic (on any incoming chan-nel). Receives are blocking: the receiver resumes itsexecution only after the message awaited has been ef-fectively received.Other kinds of communication, such as the rendez-vous, can be built easily on top of these basic opera-tions.3 Observation mechanismsPOMmakes it possible to combine application nodestogether with an observation node, whose role is tocollect and handle trace information relative to the be-haviour of the application. The observation node canproceed to an \on the y" analysis of the informationreceived, or it can store this information for a post-mortem analysis. Actually, the observer can be justa part of a programming environment featuring soft-ware tools such as trace collectors, distributed appli-cation debuggers, performance analysers and graphi-cal viewers.Inserting \observation points".It is up to the application programmer to specifywhich events must be traced. To do so, the pro-grammer must insert observation points in the code ofthe distributed application. During the execution ofthe distributed application, every time an applicationnode runs through an observation point, a trace mes-sage is sent to the observation node. A trace messageis typically composed of information for identifyingand dating an event. POM o�ers several dating mech-anisms, whose management remains fully transparentto the application programmer. When loading a dis-tributed application, the programmer simply needs tospecify which kind of dating mechanismmust be used.The events traced can thus be stamped and/or dated,

and the dating can be achieved according to a localor global time reference.Stamping events.Stamping events makes it possible to analyse the syn-chronisations that occur between the application nodesduring a distributed execution. These synchronisa-tions are captured by the notion of causal dependency.Each application node manages a local stamp thatis updated every time an application message is sentor received. POM ensures that the value of the lo-cal stamp of the sender is sent transparently togetherwith the application message.To date, POM allows the user to choose betweentwo kinds of stamps: vectorial stamps whose size re-mains constant during an execution, or \adaptive"stamps whose size can vary dynamically [6]. POMwas designed so that it can easily incorporate newkinds of stamps.Physical dating of events.POM o�ers services for dating traced events. The de-fault dating mechanism is based on the local time oneach application node (value returned by the physi-cal clock of the processor). POM also incorporatesa mechanism for dating events globally. We optedfor an approach based on a statistical method thatconsists in estimating the drift of the physical clockof each application node with respect to a referenceclock [?]. Once the characteristics of the clock driftshave been determined for each application node, itis possible to relate the dates taken on the clocks ofthe application nodes to that of the reference node.The accuracy of the global time obtained this way issu�cient to ensure a coherent dating of events. Theadvantage of this approach is that it is not intrusive.The measurements required for evaluating the clockdrifts are performed before and after the actual exe-cution of the distributed application. This executionis thus not altered by the global dating mechanism.On the other hand, it is necessary to wait till theend of the distributed execution before global datescan be computed. The mechanism for global datingimplemented in POM is thus only appropriate for apost-mortem trace analysis.Generic observers.POM provides the programmer with a set of prim-itives for developing observation programs. Theseprimitives make it possible to receive trace messages

in a deterministic or non-deterministic way, and toextract from these messages signi�cant information,such as the name of the event traced, the physicaldate of this event (local or global), the value of theassociated stamp, etc.The application programmer does not have to de-sign a new observation program for each distributedapplication. Actually, the primitives of POM per-mit the design of generic observation programs thatcan perform the most simple observation functions,such as collecting, �ltering and storing trace infor-mation. Generic observation programs can easily in-terface with analysis tools such as those designed inour laboratory (visualization of dependency graphsor graphs of global states, concurrency measurement,evaluation of predicates) [1].When loading a distributed application, the usermust specify what kind of trace information must begenerated every time an observation point is reached,and which observation program must be used to col-lect and deal with this information.The user describes the kind of observation requiredby passing ad hoc parameters to POM's loader, whichis detailed in section 4.2.4 Interface4.1 Modules APS and OBSThe services o�ered by POM are made available tothe application programmer as a set of around fortyprimitives that forms two distinct modules. ModuleAPS (APplication Services) permits the developmentof application programs, whereas module OBS (OB-servation Services) is devoted to the implementationof observation programs.The number of primitives has been intentionallylimited in order to obtain a simple and easily im-plementable interface. For example, POM does notpropose any non-deterministic receive because such afunction can be easily obtained by combining some ofthe existing primitives. Likewise, we decided not totype messages. The interpretation of the content ofa message is thus left to the application programmerand neither packing nor unpacking is necessary.APS primitives.The primitives of module APS are mostly communi-cation primitives. Two primitives are available forsending messages, in point-to-point mode (APS send)or in broadcast mode (APS bcast). The corresponding

receives (APS recv from and APS recv bcast from respec-tively) are blocking primitives that necessitate thatthe incoming channel be identi�ed explicitly. Non-deterministic receive can be realized thanks to the twoprimitives APS probe from and APS probe bcast fromwhich are non-blocking primitives that test an incom-ing channel belonging to either the point-to-point communication network, or the broadcast com-munication network. Primitives APS probe andAPS probe bcast detect pending messages on any in-coming channel for one or the other communicationnetwork. Once a pending message has been detected,the primitives APS info pid and APS info length can beused to get its origin and its length.Module APS additionally incorporates a few prim-itives that provide information such as the numberof application nodes, the identity of the local node,the local time returned by the physical clock of theprocessor, etc.Module APS provides a primitive APS trace that al-lows the programmer to insert observation points inthe application program. When this primitive is in-voked, a message is automatically generated and sentto the observation node. This message contains theinformation passed as parameters to APS trace by theprogrammer, namely a string identifying the event ob-served and optional untyped data whose interpreta-tion is left to the programmer. To this basic informa-tion, POM automatically adds dating data, whose na-ture depends on the observation options speci�ed bythe user when loading the application (see section 4.2for more details).OBS primitives.Module OBS allows the observer to receive tracemessages thanks to a primitive that blocks, waitingfor pending messages on a given incoming channel(OBS recv trace from). A non-deterministic receive canbe done using either OBS probe trace orOBS probe trace from, together with OBS info pid andOBS info length. Module OBS o�ers no send primitive.The observation node can only collect trace messagesand extract data �elds from these messages. For this,some functions of module OBS give access to the userdata as well as to the value of the stamp and thelocal date embodied in a trace message. The globaldate of an event can only be obtained after the dis-tributed application has completed by using functionOBS convert to gclock which converts the local date ofan event into the corresponding global date.

4.2 The loaderThe procedure for loading and running a distributedapplication on a given platform is most of the timehighly dependent on the characteristics of this plat-form. Each architecture imposes its own requirementswhen it comes to allocating a partition of processorsand loading executable programs on this partition.The POM environment includes a loader tool namedpom load, whose implementation may depend on theplatform considered but whose interface remains ho-mogeneous on all platforms.The syntax recognized by the loader permits com-plex loadings. One can for example load a di�er-ent executable program on each application node (oron a subset of the application nodes). One can alsopass parameters to the various executable programs(including the observation program), specify whichkind of observation must be achieved during the ex-ecution, etc. The following example shows how toload and start a distributed application based on themaster-slave model, with a single master task run-ning the executable master and six slave tasks runningthe same program slave. The master program takesas a parameter the number of slave tasks. Moreover,the behaviour of this distributed application must beobserved by the observation program my obs. Thetrace information must include vectorial stamps (op-tion -stm VECT) and events must be dated accordingto a global time (option -gtm).> pom load -s 7 -on 0 master 6 -on 1..6 slave -stm VECT-gtm -obs my obsIn this example the application nodes are givenidenti�ers which are logical identi�ers. It is neces-sary to map these logical identi�ers with the physi-cal nodes of the target platform. On some machines,such as the Intel ipsc and Paragon XP/S, the operat-ing system gives each physical node of a partition ofsize N a logical identi�er ranging from 0 to N � 1.Therefore, the user of POM does not always needto describe explicitly the mapping of the applicationnodes. Yet, this can be done thanks to the option-map recognized by pom load. The explicit mappingremains mandatory when the platform considered iscomposed of a set of workstations. It is then nec-essary to name explicitly the workstations that willsupport the distributed application. Hence, for load-ing and starting on two workstations named excaliburand durandal a distributed application composed oftwo programs ping and pong, the command line canbe as shown below:

> pom load -s 2 -on 0 ping -on 1 pong -map 0 durandal-map 1 excalibur5 ImplementationTo date, POM has been ported on the distributedmemory parallel computers of irisa, that is, the Intelmachines ipsc/2 and Paragon XP/S. POM was imple-mented on these platforms using the communicationkernels NX/2, OSF/1 and SUNMOS. It was also im-plemented so as to allow the execution of distributedapplications on a network of workstations (e.g. SunSparc workstations), using TCP-IP and UDP sockets.Another version makes it possible to simulate paral-lelism on a single workstation. These two versions arequite useful because they allow the design and the ex-perimentation of new distributed applications withoutmonopolizing the ipsc or the Paragon. Applicationscan thus be loaded and run on real parallel machinesonly after they have been tested and corrected. Wealso implemented POM above PVM [2]. However,this version does not exhibit very good performanceson parallel supercomputers: the mechanisms of PVMare too complex and imply too many memory copiesto be able to compete with the performances obtainedwith the more \direct" implementations of POM.Performances.This section reports the performances observed whenexperimenting POM on several platforms. We testedseveral versions of POM corresponding to alternativeimplementations on a network of Sun workstationsand on the Intel Paragon XP/S.We also measured the inuence of the observationservices on the performances of the communications.The technique we use for computing the global timehas no e�ect upon the behaviour of the application,as explained in section 3. On the other hand, thestamping mechanisms can alter the communicationperformances, although measurements show that thisalteration remains negligible.Figures 2 and 3 shows the maximal bandwidths ob-served on two Sun Sparc 4/50 IPX workstations con-nected to the same Ethernet trunk. They also showthe bandwidth observed when the stamping serviceis enabled in POM-TCP. Figure 3 does not distin-guish between the performances of POM-TCP withand without stamping, because the di�erence cannotbe measured.Figure 4 shows the transmission times measuredwith several versions of the POM library developed

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000 30000

B
an

dw
id

th
 in

 K
by

te
s/

s

Message size in bytes

POM on a network of Sun workstations

POM-TCP IP
POM-TCP STM

POM-UDP
POM-PVM

POM-UDP

POM-PVMPOM-TCP IP
(no stamping)

POM-TCP IP
(stamping enabled)

Experimentation with two Sun Sparc 4/50
workstations connected to an Ethernet trunk.Figure 2: Bandwidth observed for short messages ex-changed between two workstations.

0

200

400

600

800

1000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

B
an

dw
id

th
 in

 K
by

te
s/

s

Message size in bytes

POM on a network of Sun workstations

POM-BSD
POM-PVM

POM-PVM

POM-TCP IP

Experimentation with two Sun Sparc 4/50
workstations connected to an Ethernet trunk.Figure 3: Bandwidth observed for long messages ex-changed between two workstations.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
in

 s
ec

on
ds

Message size in bytes

POM on the Intel Paragon XP/S

POM-NX
POM-NX STM

POM-PVM
Experimentation on the Intel Paragon XP/S
running OSF1 1.0.4 (patch 2.5.1).

POM-NX with
no stamping

POM-PVM

POM-NX with
vectorial stamping

Figure 4: Transmission times observed for short mes-sages on the Intel Paragon XP/S.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

B
an

dw
id

th
 in

 K
by

te
s/

s

Message size in bytes

POM on the Intel Paragon XP/S

POM-NX
POM-PVM

POM-NX

POM-PVM

Experimentation on the Intel Paragon XP/S
running OSF1 1.0.4 (patch 2.5.1).Figure 5: Bandwidth observed on the IntelParagon XP/S.for the Intel Paragon XP/S. This �gure shows thatlow latency that can be obtained with POM-NX (im-plemented directly above the NX-OSF/1 kernel). Wealso incorporated in �gure 4 the transmission timesobserved with POM-NX when the stamping service isenabled. It turns out that with the current versionsof POM-NX, the global cost of stamping mechanismsremains acceptable.Figure 5 shows the maximal bandwidths observedon the Paragon for long messages. The performancesobserved when the stamping service is enabled donot appear in this �gure, because they superimposewith those obtained when the stamping service is dis-abled. The maximal bandwidth observed with POM-NX corresponds to that of the maximal bandwidththat can be obtained when calling directly the NXprimitives on our Paragon in its current con�guration(OSF/1 1.0.4, patch 2.5.1).6 ConclusionPOM allows the programmer of a distributed ap-plication to disregard a given architecture or a givenoperating system to a large extent. The communica-tion services it o�ers are basic services, but they canbe easily and e�ciently implemented on most parallelmachines. POM thus �ts especially well the designof applications for which performances are the pri-mary concern. Moreover, the observation services itprovides broaden its range of application, since theypermit the generation, the collection and the exploita-tion of execution traces and incorporate mechanismsfor stamping events and for computing global dates.POM can therefore be perceived as a convenient fa-

cility to interface a distributed application with manytrace analysers and graphical viewers.To date, POM has been ported on several plat-forms as di�erent as the Intel Paragon XP/S and anetwork of workstations. We could thus check its ef-fective portability and it is now part of the variousparallel programming environments developed in ourlaboratory.In the future, we may port POM on new platformssuch as the Cray T3D and the IBM SP1. We wouldalso like to experiment POM on a set of worksta-tions connected via a FDDI network. We also con-sider designing an extended POM featuring parallelI/O mechanisms and allowing lightweight processingon each application node.References[1] C. Bareau, B. Caillaud, C. Jard, and R. Tho-raval. Measuring Concurrency of Regular Dis-tributed Computations. In TAPSOFT'95, Theoryand Practice of Software Development, LNCS 915,Springer Verlag, Aarhus, May 1995.[2] A. Beguelin, G. A. Geist, W. Jiang, R. Manchek,K. Moore, and V. Sunderam. The PVM Project.Technical Report, Oak Ridge National Labora-tory, February 1993.[3] R. Butler and E. Lusk. User's Guide to theP4 Programming System. Technical Report TM-ANL-92/17, Argonne National Laboratory, 1992.[4] R. Calkin, R. Hempel, H.-S. Hoppe, and P. Wyp-ior. Portable Programming with the PARMACSMessage-Passing Library. Parallel Computing,1994.[5] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H.Worley. A User's Guide to PICL - A PortableInstrumented Communication Library. Techni-cal Report ORNL/TM-11616, Oak Ridge NationalLaboratory, May 1992.[6] C. Jard and G.-V. Jourdan. Dependency Trackingand Filtering in Distributed Computations. Re-search Report 851, Irisa, Rennes, France, August1994.[7] Message Passing Interface Forum. Document fora Standard Message{Passing Interface. Techni-cal Report CS-93-214, University of Tennessee,November 1993.

