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Abstract

In previous papers [CMC00, CMCO01], M. Cialdea Mayer and S.
Cerrito have proposed a proof procedure for some variants of first or-
der modal logics, called T'abpy; the proposed calculi are free variable
tableaux methods.

Essentially, a first order modal interpretation is a set of classical
interpretations equipped with a binary relation, the accessibility re-
lation [Kri63]. However, several choices can be made with respect to
semantics, concerning the object domains, the designation of terms,
the existence of objects [CMC00, CMCO1].

So, several variants of quantified modal logics (QMLs) are possible,
just by choosing different combinations of the cases considered above.
We call them DDE variants (Domains/Designation/Existence variants)
of QML. Mayer and Cerrito’s systems are modular w.r.t. “DDE vari-
ants”.

We have implemented Tabgy
prover for fist-order modal logics . This paper aims to describe T'ab gy

Prov )
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1 Introduction

The proof systems T'abpy are calculi in the free-variable tableau style ([Fit88])
treating different DDE variants of first order modal logics. The notion of
DDE variants is described in the papers [CMC00, CMCO01] and we invite the
reader to consult these papers for more details. We will recall it briefly here.

’



1.1 DDE variant

Different hypotheses can be considered on first order modal semantics, con-
cerning the object domains, the designation of terms and the existence of
objects :

The object domains (relation between the domains of the worlds) :
e constant domain : All worlds have the same domain. (This case is
not treated by Tabpy 7" )
e cumulative domains : If the world w’ is accessible from the world w
then the domain of w is included in the domain of w’.
e variable domains : Nothing is supposed concerning the domains of
worlds.

The designation of terms :
e rigid designation : The denotation of a function symbol is the same
in every world.
e non rigid designation : A function symbol may denote different
functions in different worlds.

The existence of terms :
e local terms : For any ground term, its extension belongs to every
domain.
e non local terms : The extension of a ground term does not have to
belong to every domain.

By choosing different combinations of these variants, several quantified
modal logics (QML) are defined : they are called DDE (Domain/ Designa-
tion/ Existence) variants of QML.

1.2 Tableaux systems
Tableaux are refutation systems. In order to prove a formula F', one tries to

refute = F', producing a contradiction. This is done by finding a substitution
allowing every leaf of the tableau to contain two complementary literals.
This procedure involves expanding —F' (by applying expansion rules) until
complementary literals are found (or no expansion rule can be applied any
more). In a tableau proof, such a construction takes the form of a tree. If
all the branches of the tree can be closed by a same substitution then the
tree is said to be closed and the sentence —F' is refutable.



1.3 The tableau systems Tabgy
The tableau system T'abpy is defined in [CMC00, CMCO01]. By lake of space,

we will do not recall its expansion rules here.

2 The exploration strategy

Each node of a Tabgy tableau tree is a set of formulae. The calculus Tabry
is intrinsically non-deterministic, i.e. a node might be expanded by means
of several rules. Hence, it is crucial to define a fair and complete strategy of
rule applications if one wants to implement it.

Different properties are associated to expansion rules. We have classified
rules as follows. A rule is:
e static if its application does not lead to a loss of information. Otherwise,
the rule is dynamic. A dynamic rule application correspond to an access
to a new world. Typical dynamic rules are those allowing one to expand
formulae of the form < A.
e “looping” if it can be activated an unlimited number of times by the
same formula (same = structurally equal). A typical looping rule is the rule
called “y-rule” allowing to treat universal quantification. A looping rule is
static.
¢ branching when it produces more than one expansion, hence generates
two branches. Only one rule is branching in the considered system : it is
the rule allowing to expand disjunction. This rule is static.

Each rule enjoys one and only one of these four properties:
(1) static and not looping and not branching, (2) looping, (3) branching, or
(4) dynamic.

A block is a sequence of rule applications. A block is built by stages:
(stage 1) Any static not looping and not branching rule is applied as far
as possible until no such a rule is applicable.

(stage 2) For each formula, the corresponding looping rule is applied just
once in the block!.

(stage 3) Any branching rule is applied as far as possible until no such a
rule is applicable.

(stage 4) Even if several dynamic rules can be applied, only one dynamic
rule is applied and this ends the construction of the block.

'hut see the following discussion of the backtracking mechanism



Each tableau branch is expanded block by block. The end of any block
corresponds to a dynamic rule application i.e. to an access to a new world.
The tree exploration is by depth-first search.

T'wo bounds are defined : B1 is the maximum number of explored worlds
(intuitively, the maximum number of dynamic rule applications, generating
new worlds in the branch) and B2 is the maximum number of the ~-rule
applications to a same formula in any given world (intuitively, the maxi-
mum number of instanciations for a universal formula in any given world).
These bounds are needed because a branch, in principle, could be expanded
infinitely by an unlimited use of v and dynamic rules applications.

In order to know whether a branch is closed, we have to test if a substitu-
tion which closes the branch exists. This test is always done before building
a new block (and when the branch can not be expanded anymore).

We have to deal with two types of choice points: (type A) “which dy-
namic rule apply in stage 47" and (type B) “which substitution to choose
in order to eventually close all the branches of the tree?”. A branch cannot
be expanded any more when the maximal exploration bounds are reached
or when no more rule can be applied to it. A branch closure fails when the
branch cannot be expanded any more and no substitution can close it.

When the current branch closure fails, the applications of any given static
rule can not be the cause of failure (by the static rule definition). There can
be different reasons of failure : more static rules have to be applied in
stages 2 and 3 2, or a dynamic rule is a bad choice in a stage 4 of a block
(corresponding to a bad choice of type A), or the substitution chosen to
close the previous branches fails to close the current branch, corresponding
to a bad choice of type B.

If the branch closure fails, we backtrack always before stage 4 : this allows
us not to loose the previous static rule applications and apply a looping rule
one more time. This is essential to the completeness of the strategy and
allows us to apply a looping rule to the same formula & times (where k is a
bound provided by the user) in a given block, as an effect of backtracking.

The first choice of backtracking is the most recent choice point of type A.
If the current branch can not be closed by backtracking over all the choice
points of type A in the branch, then one tries to find another substitution
on the previous branch (corresponding to backtrack on a choice of type B).

2That is, a y-rule needs to be applied again to the same formula.



In [Thi0O1], we prove that our strategy is sound and complete, provided
that, by iterative deepening, the bounds B1 and B2 on the tableau con-
struction are incremented as far as needed (this correspond to use an “un-
bounded” version of the strategy).

The choice of applying deterministic rules (in our case : static rules)
before a non-deterministic (a dynamic) one is classical.

In principle, a y-rule might need to be applied an unlimited number of
times to a same formula in a given world, in order to achieve completeness
of the proof search. A classical way to deal with this problem is to set an
upper bound (B2 in our case) on the number of y-rule applications to a same
formula in a given world [Fit96].

The specific difficult issue in our case, is to combine these two classi-
cal approaches. Applying B2 times a ~-rule to a same formula in a given
world leads immediately to an explosion of the search space. In our im-
plementation, the first time the prover tries to refute —F, it applies just
once a y-rule to a same formula in each world. The fact that the number
of v-rule applications may be increased up to the bounds B2 is an effect of
backtracking.

The advantage of such a choice is that if a proof exists where the y-rules
are applied a number of times inferior to the upper bound B2, such a proof
is found by the prover.

3 Tabpy """ description

3.1 Short description
The aim of Tabpy 7% is to detect whether a given sentence is a theorem
of a given QML. Of course, proofs are explored up to a given depth, entered

Prover »

by the user. The strategy explained previously is Tabpy s strategy.

3.2 User part
In our prototype, the user indicates the sentence to prove, the propositional

base (according to the accessibility relation) of the considered logic, the DDE
variant, two bounds respectively on the number of explored worlds and the
number of looping rule applications to a same formula.

Otherwise, the proof-search is completely automatic.

Tabpy (thus, Tabpy 7% too) deals with the propositional bases K, D,
K4, T and S4 (see [Eme90] for a formal definition of the logics according to



their accessibility relation).

3.3 Implementation : language and architecture
We have implemented T'abpy in Objective Caml. It is accessible on line at
http://www.lri.fr/ thion/Proto/proto.php. One just needs a standard
web browser to use it. The Objective Caml program is compiled on the
LRI? server. The user formulates a query by filling the form in the web
page.

A php function calls the execution of the program on the server and the
answer of the program is given to the user in a frame under the form.

In order to help the user, a pre-defined set of sentences to test and help
topics supplement the form.

3.4 Purpose of the tool
The tool Tabpy %" will be part of more important tool allowing to test

the constraint preservation in data bases.
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