
Differential Privacy
In a Nutshell

M2 SIF - SED

Tristan Allard
Univ. Rennes / Irisa lab.

tristan.allard@irisa.fr

Autumn 2023



Progress of the Talk

Introduction

Reminder : Partition-Based Models

Differential Privacy

Conclusion

References



2

Differential Privacy and Privacy-Preserving Data Publishing

Privacy-Preserving Data Publishing (PPDP) :

I Publish personal data for analysis purposes (accurate
aggregate queries). . .

I . . . while preserving individuals’ privacy (uncertain point
queries)

I Also called sanitization

Differential privacy is one way to perform sanitization.
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Components of a Privacy-preserving Data Publishing
Solution (reminder)

Three components:

1. Privacy model: What does it mean for the data released to
be privacy-preserving?

2. Privacy mechanism: How to produce the privacy-preserving
data to be released?

3. Utility metric: How much useful is the released data?

Pseudonymity does not work. . . Which component(s) does it miss ?
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Variations on a Theme (reminder) I

Interactive Non − Interactive
Answer to queries Release a full dataset (sanitized)

Privacy−Preserving Data Publishing

Centralized Publishing Local Perturbation
Data sanitized independentlyDataset analyzed before sanitization
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This talk

This talk : introduction to the differential privacy model, a de facto
standard today, and to its major mechanisms (no utility measures).

Warning : research about sanitization is still very active !

Please, go deeper !

I A vast litterature : big-bang of the PPDP works in computer
science : early/mid 2000’s

I For a good survey : Chen et al in Foundations and Trends in
Databases 2009, see [1] ;
Note that : (1) other surveys exist and (2) 2009 is far.

I For more questions : email me
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The k-Anonymity Model

A release is k-anonymous [7] if:

I it does not contain any identifiying attribute ;

I any QI is indistinguishable from at least (k − 1) others ;

A group of records indistinguishable wrt their QI is called an
equivalence class.
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Beyond k-Anonymity: the Bayes-Optimal Privacy
Attempt

Founding intuition

Background knowledge about SD should be expressed and taken
into account by the privacy model.

The Bayes-Optimal Privacy model [6] is an early attempt to
this end (2006):

I Background knowledge: joint distribution between QI and
SD

I Prior belief: given a targeted QI q and a SD s, probability of
s given q

I Posterior belief: given a targeted QI q, a SD s, and the
sanitized release V, probability of s given q and V

I Privacy breach: if distance(posterior belief, prior belief) > θ
(too much gain in knowledge)
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Bayes-Optimal Privacy : Impractical

If Bayes-Optimal Privacy were practical, it could permit to
check that releases do not allow significant knowledge gains. . .

But :

I Obtaining the joint distribution f that represents the
adversarial background knowledge ?

I What if there are several adversaries ?

I What about other kinds of knowledge ?

I Cost of checking all the possible (q, s) pair !



10

l-Diversity (reminder)

l-Diversity: a simple and easy-to-check condition for protecting
against SD homogeneity and adversarial negation statements.

l -Diversity [6]

An l-diverse equivalence class contains at least l well-represented
sensitive values.

(See the previous CM for precise definitions of “well-represented”.)
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Paradigm#1 : the Uninformative Principle

At the heart of l-Diversity and followers, there is a vision of
privacy : the uninformative principle.

Paradigm #1 : Uninformative Principle [6]

A privacy breach occurs when the prior belief of the adversary
differs significantly from his posterior belief (i.e., below a
user-defined threshold).

“If the release of the statistics S make it possible to determine
the value Dk more accurately than is possible without access to
S, disclosure has taken place (. . . )”
Dalenius 1977 [3]
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Paradigm#2 : Differential Privacy
I Global trends are not private and must be learnt : there must

be a knowledge gain !

I Privacy is about each individual value, i.e., each individual
contribution to the global trend

Paradigm #2 : Differential Privacy

A function f satisfies differential privacy iif: the possible impact of
any individual on its result (its possible outputs) is limited.
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Intuitions - Mechanism

I Differential privacy originally considers aggregate queries
(counts, sums). . .

I For ex : q = SELECT COUNT(*) FROM PATIENTS WHERE

DIAGNOSIS LIKE ’FLU’

I How to hide the impact of any single individual participation
to the aggregate result ?
I Add random noise to the true result ! Answer q(D) + noise
I Such that the noise is proportional to the participation of

one individual.
I For ex : noise above should be proportionnal to the impact of

one individual on q, i.e.,, proportionnal to 1 !
I What if q had been a sum of salaries ?
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Intuitions - Aggregation is not enough I

A simple example :

I Private table : PATIENTS (AGE, ZIP, GENDER, DIAG)

I Background knowledge : Bill is a man, 26 years old, zipcode
12345, present in PATIENTS.

I Consider the following queries :
I q1 = SELECT COUNT(*) FROM PATIENTS WHERE (AGE = 26

AND ZIP=12345 AND GENDER=’m’)

⇒ q1(D) = 1
I q2 = SELECT COUNT(*) FROM PATIENTS WHERE DIAG LIKE

’FLU’

⇒ q1(D) = 100
I q3 = SELECT COUNT(*) FROM PATIENTS WHERE NOT (AGE

= 26 AND ZIP=12345 AND GENDER=’m’) AND DIAG LIKE

’FLU’

⇒ q2(D) = 99

I Does Bill have flu ?
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Intuitions - Aggregation is not enough II

In general, with a sufficient number of COUNT queries, and even
with naive noise addition, it is possible to build and solve a
system of linear equations for obtaining the target values.

Real-life illustration1

Assume a loan DB with a clientId column, a secret loanStatus,
and an exact count(·) interface to the DB (perturbed answers
might be vulnerable as well). Perform a sufficient number of
queries as follows and solve the system.

SELECT count(clientId) FROM loans

WHERE clientId BETWEEN RANDOM1 and RANDOM2

AND loanStatus = ‘C’

1A real-life system https://aircloak.com/ has been recently broken
(2018) based on this kind of attack [2].

https://aircloak.com/
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Intuitions
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Intuitions

Figure: Limited impact of any possible Charlie
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Intuitions

Figure: Limited impact of any possible Charlie
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Initial Model

ε-differential privacy (from [4])

A random function f satisfies ε-differential privacy iff: For all D
and D′ differing in at most one record, and for any possible
output S of f, then it is true that:
Pr[f(D) = S] ≤ eε × Pr[f(D′) = S]

I f : here, an agregate query perturbed by adding random noise
to its output

I “For all D and D′”: all possible datasets

I “D and D′ differing in at most one record”: here, D is D′

with one tuple more or one tuple less (variant: one tuple with
different values). Called neighboring datasets

I ε : the privacy parameter, public, common values: 0.01, 0.1,
ln 2, ln 3

I eε × Pr[. . . ] : if one side is zero, the other must be zero too
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Query Sensitivity

Different individuals, different impacts. . .

In general: Sg = maxD,D′ ||g(D)− g(D′)||1 where D and D′ are two
neighboring datasets.
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Query Sensitivity

Different individuals, different impacts. . .

I Presence/absence of an individual on the result of a COUNT: at
worst +/- 1

I Presence/absence of an individual on the result of a SUM:
max(|domainmin|, |domainmax |)

Quantification of the worst-case impact of any possible individual
on the output of a query g: called query sensitivity, and denoted
Sg.

In general: Sg = maxD,D′ ||g(D)− g(D′)||1 where D and D′ are two
neighboring datasets.
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Laplace Mechanism for Real-Valued Interactive Queries

A - “Excellent, but how to achieve differential privacy ?”
B - “Just add random noise to each query output, he said !”
A - “But from which distribution ? Uniform ? Gaussian ? Gamma
? Poisson ? . . . ? Any ?”
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Laplace Mechanism for Real-Valued Interactive Queries
Given g and ε, adding a random variable sampled from a Laplace
distribution with mean 0 and scale factor Sg/ε satisfies
ε-differential privacy [5].

Figure: Laplace (0, 1/0.01)

Laplace probability distribution function : PrLap(0,b)(x) = e−|x|/b

2b
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Laplace Mechanism for Real-Valued Interactive Queries

Given g and ε, adding a random variable sampled from a Laplace
distribution with mean 0 and scale factor Sg/ε satisfies
ε-differential privacy [5].

Assume that the COUNT when Bob participates to the dataset is
r = 101:

I In red, distribution of perturbed outputs (r ′ = r + n) when
Bob is in

I In blue, idem when Bob is out
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Why does Adding Laplace Noise Work ?

Let n be the noise added to the exact result r of the function g

computed over D to satisfy DP : r ′ = r + n. The distribution from
which n is sampled must hide the possible impact of the
presence/absence of any individual.
Why is the Laplace distribution appropriate for satisfying DP
?

I With Bob in, the output is r ′ = r + n.
With Bob out, the output is r ′ = (r − Sg) + n

I To satisfy DP, the probabilities of outputting the former or
the latter must be similar (i.e., constraints of the DP model) :
Eq. 1 : Pr[r ′ = r + n] ≤ eε · Pr[r ′ = (r − Sg) + n]
Eq. 2 : Pr[r ′ = (r − Sg) + n] ≤ eε · Pr[r ′ = r + n]

I Eq. 1 : Pr[n = r ′ − r ] ≤ eε · Pr[n − Sg = r ′ − r ]
Eq. 2 : . . .

I Eq. 1 : Pr[n] ≤ eε · Pr[n − Sg]
Eq. 2 : Pr[n − Sg] ≤ eε · Pr[n]

I Sampling n in Lap(0, Sg/ε) satisfies the two equations ! 2

2Homework : Demonstrate that ! (play with Laplace probability
distribution function)
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Differential Privacy Properties

I Self-composability : composing the outputs of two
independant releases sanitized by differentially-private
function(s) satisfies differential privacy :
I Where εfinal =

∑
εi If input datasets are not disjoint

I Or εfinal = max εi otherwise

I No breach from post-processing :
I (Laplace mechanism is independent from data)
I Any function applied to a differentially-private input produces

a differentially-private output

A non exact statement hides in this slide, can you find it ?
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Inherent Limits

I Noise distribution centered on 0 . . .
⇒ Sum of noises converges to 0 . . .
⇒ No unlimited number of queries !

I Composability properties ⇒ the privacy parameter ε can be
seen as a budget that must be distributed over the queries to
execute (εfinal =

∑
εi )
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Discussion

According to you:

I Against which adversary may differential privacy protect ?

I How could you set the value of ε ?

I Take your favorite analytical algorithm, how would you make
it satisfy differential privacy ?
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Conclusion

I Privacy-preserving data publishing : a bushy literature
I Differential privacy is the current de facto standard thanks to

its sound privacy guarantees and composability properties.
I Strong support in academia (e.g., the inventors of differential

privacy were awarded the prestigious Gödel Prize in 2017)
I Major data-centric organisations have switched to differential

privacy (e.g., Google and its COVID19 statistics, the Census
Bureau and its decennial 2020 census, LinkedIn and its
analytics about the interests of its users)

I Mechanisms for satisfying differential privacy have been
proposed in various PPDP settings (e.g., Laplace for
real-valued interactive queries, randomized response for local
perturbation, synthetic data generation for centralized
publishing)

I Research still very active !
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