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Abstract—Implicit Computational Complexity (ICC) aims at
giving machine-free characterisations of complexity classes. Be-
cause it is usually sound but not complete, it actually provides
certificates that a given program can be run within a given
amount of resources. ICC is usually applied on toy languages with
restricted expressivity, we show here that it can be performed on
real programming languages.

Because it is usually a static, syntactical analysis of the
programs, ICC is well-suited to be performed at compile time.
The bounds given by ICC can then be used to fuel some
optimisation or to produce certificates of good behaviour. Modern
compilers do most of their work in a modular sequences of passes
done on some Intermediate Representation (IR) language. The
IR is a generic typed assembly-like language and thus very well
suited to express ICC criteria. The modularity of the passes make
it easy to add one and to re-use existing ones at will.

We focus here on the relatively simple analysis of Non-Size
Increasing (NSI) programs. We’ve implemented a NSI analysis
for the LLVM compiler. This can be seen as a proof of concept
that ICC and compilers are able to interact productively.

I. INTRODUCTION

In this article, we present an experiment in bringing analysis
from Implicit Computational Complexity into real life compil-
ers.
A. Context and Motivations

ICC aims at finding syntactic criterion on programs that
guarantee some semantic property (usually some complexity
bound). It emerged with the Bounded Recursion of Cob-
ham [Cob62] but was really created by the breakthrough result
on Safe Recursion by Bellantoni and Cook [BC92]. Since then,
many different directions have been studied in ICC. The main
ideas revolve around following dataflow (the Tiering of Leivant
and Marion [LM95], the Size Change Termination of Lee,
Jones and Ben-Amram [LJBA01], the Non-Size Increasing
programs of Hofmann [Hof99], . . . ), performing a static check
on values (the Quasi-interpretations of Bonfante, Marion
and Moyen [BMM11], the mwp-polynomials of Kristiansen
and Jones [KJ09], . . . ) or enforcing a strict type checking
(variations on Girard’s Linear Logic [Gir87] such as Baillot
and Terui’s DLAL [BT09]). Schöpp introduced a more re-
stricted Bounded Linear Logic: the Stratified Bounded Affine
Logic [Sch07]. Hofmann and Jost [HJ03] furnish upper bounds
on the heap usage in functional programming by accepting
some restrictions.

Most of these results usually concern “toy” languages such
as Term Rewriting Systems [AM13], λ-calculus or the LOOP
language. Even if such languages do have a strong utility
in Theoretical Computer Science, they are not daily used by
programmers. On the other hand, actual languages use much
more constructions (e.g. objects, pattern matching, exceptions,
. . . ) which make analysis complicated. Thus, even with 20
years of ICC, it is not possible today to apply its results on
actual programs. We start filling the gap.

The analysis we described here, based on NSI programs,
it simple enough to be expressed on a small assembly-like
language. Since it only focus on memory allocation and
deallocation, we can concentrate on these operations (that is,
the malloc and free in a C program) and on the control
flow, and forget all the complicated constructions that may
be used by the programming language. Since this is a purely
syntactical analysis (as all ICC), it is perfectly suited to happen
at compile time.

From the other end of the gap, we’ll use the intermediate
representation in a compiler. During the compilation process,
the source code is first translated in an intermediate language
where optimisations are performed before being translated
again into the target code in assembly language. This inter-
mediate representation has few constructions and is simple
enough to perform all the optimisations steps. Especially for
our practical case, it strips all the constructions of the programs
but keep the control flow and the allocations that we want to
study.

Moreover, compilers already contain many analysis and
optimisation tools that we can reuse. Most of these tools are
spread in modular passes that can be applied in various order.
Typically, there is no need to rebuild the control flow of the
program. It is something that is already used by many compiler
optimisations and thus that already exists as a standalone pass.
We just need to call this pass and use its result. This limits
the amount of code we have to write in order to perform our
analysis.

B. Analysis and Optimisation

Compilers are usually focused on optimisation. Indeed,
the goal is to produce an efficient code in order to have
a fast program. ICC mostly provides analysis without much



optimisation of the code. However, analysis and optimisation
are not so far apart. . .

Firstly, an analysis can be used to fuel further optimisations.
Typically, building the Control Flow Graph of a program is an
analysis that is used for many optimisations afterwards. Here,
knowing the precise amount of memory that a function or
program will need can help optimising system calls: rather
than using the standard library to find free memory and
allocate it, it becomes possible to let the program reuse its
own memory efficiently.

Secondly, providing proven bounds on the time or space
usage of a program is also a security property. If the program
provably uses a fixed amount of memory, then it will not try
to perform an attack by heap or stack overflow, this warns
us if the program could try to exhaust system resources.
Restricting the syntax in order to enforce (some) security
is similar to what Facebook does with the restricted FBJS.
Since analysis is complex but verification is (usually) easy,
one can imagine a compiler that will provide a certificate for
some property on the compiled code, in a Proof Carrying
Code paradigm [Nec97]. The certificate could be checked, for
example, before uploading an application to an application
store for mobile devices to guarantee some safety to the user,
or, at the other end, before downloading the application to the
device to check if it has sufficient capacity to run it.

Next, some ICC analysis are known to also embed
some program transformation in them. Notably, the Quasi-
Interpretations method guarantee that the programs run in
polynomial time if some sort of Dynamic programming is used.
Thus, a program admitting a QI can run in exponential time but
the analysis says that it will run in polynomial time after some
(known) transformation. Bringing such an analysis in compiler
will indicate which part of the code should be transformed by
which method.

Lastly, these are also first steps in experimenting ICC into
compilers. Thus, we chose to focus on a simple analysis that
is easy to express in the compiler’s intermediate representation
rather than on a powerful analysis/optimisation which require
more work to be used. Thus, this can be seen as a proof of
concept: yes, ICC and compilers can work together and can
fuel each other fruitfully. This opens the way for future works.

II. NON SIZE INCREASING PROGRAMS

A. Safe Recursion and Non Size Increasing

In Safe Recursion, Bellantoni and Cook analysed repeated
iterations as a source of exponential growth. Typically, expo-
nentiation can be computed by iterating doubling, itself an
iteration.

In order to prevent repeated iterations, they designed a
syntactical criterion (hence, a static analysis) based on splitting
variables into normal and safe ones, which can be interpreted
as with/without energy. Next, iteration must be performed on
a normal variable (which provides the “energy” to run the
program) and the result must be safe (the energy has been
used). Thus, when computing the exponential with the usual

recurrence 2n = 2× 2n−1, the result of the recursion (2n−1)
must be safe and cannot be used to control the doubling (2×).

However, repeated iterations is a powerful expressive con-
struction to build many reasonable programs. Indeed, writing a
program by respecting the normal/safe tiering of arguments is
often difficult. Typically, insertion sort works by iterating the
insertion of an element into a sorted list, itself an iteration. The
Safe Recursion prevents writing the insertion sort (or rather
requires to write it in a non natural way).

Hofmann identified that the problem does not come from
the exponential or sorting function but from the doubling
or insertion function. Indeed, doubling produces an output
twice as large as its input while insertion produces an output
basically as large as the input. Thus, it is not harmful to iterate
insertion, which does not increase the size of its data (or only
by a constant factor) while it is harmful to iterate doubling
which drastically increases the size of data. This justifies the
detection of Non Size Increasing (NSI) programs.

In order to detect NSI programs, Hofmann introduced a
new datatype, the diamond (�), with the particularity that this
datatype has no constructor. That is, there is no closed term
of type � and only variables can have this type. Moreover,
variables of type � must be used linearly in the result of
functions. Thus, � in the result can be seen as “price” to be
paid to compute and that can only be paid by diamonds already
present in the arguments.

The next step is to make the type system aware of �. When
working with lists, it is the cons that make the size of lists,
Hofmann requires a diamond for each cons. Thus, instead of
having the classical type α, α list → α list, cons is now of
type �, α, α list→ α list.

With this new type system, it is still possible to write
the insertion sort in the usual way, but exponentiation is not
possible anymore.

B. NSI and imperative programs

The diamonds have a very nice and natural interpretation in
imperative programs, as shown by Hofmann.

The classical representation of lists in an imperative lan-
guage is to have cells containing a value and a pointer to the
next cell, the list itself being a pointer to the first cell. When
performing a cons, a new cell must be created. For this, new
memory must be allocated (malloc). This new memory is
exactly the diamond we need to perform the cons! Indeed,
if cons is given as a third argument a pointer (to a place in
memory which is assumed to be free), then it does not need
to allocate memory and can use the one that is provided.

Hofmann shown that NSI programs can be compiled into
malloc-free C programs. The diamonds are essentially point-
ers and a program that is NSI does not need extra diamonds,
hence does not need to allocate new memory.

Having a program which is guaranteed to be NSI is not only
a complexity analysis. It also gives some security properties
(the program won’t overflow memory and won’t cause mem-
ory leaks) and some possibilities for optimisation. It becomes
indeed possible to completely remove the malloc from the



code and let the program efficiently reuse its memory. This will
prevent several system calls and calls to the standard library
that can slow down the program execution.

C. A Control Flow Graph analysis
To prove a bound on space usage, we only need to know the

maximum amount of diamonds required at any time. That is,
we can focus on the quantitative part of the analysis and forget
about the qualitative part of how and where these diamonds
are reused. Consider, for example, the following insertion sort
function (where d and d’ are �):
insert(d, y, []) -> cons(d, y, [])
insert(d, y, cons(d’, x, xs)) ->

if x<y
then cons(d’, x, (insert(d, y, xs)))
else cons(d, y, cons(d’, x, xs))

sort([]) -> []
sort(cons(d, x, xs)) -> insert(d, x, sort(xs))

It is possible to have an overview of the diamonds (i.e. of the
malloc and free in an imperative version of the program)
behaviour during the recurrence. The recursion gets a diamond
when pattern matching is performed to read and compare; if
it’s the good place it uses two diamonds (calls cons two
times): one to add the new element and another to replace the
previous element; otherwise, it simply replaces the old element
(with its own diamond, d’). This way, we understand that the
insert function will globally constructs one element, and thus
require and extra diamond, d, which can be provided by sort.

It’s easy to do this analysis using a Control Flow Graph
(CFG). A Control Flow Graph is a graph representation of
all paths that might be traversed by a program during its
execution. We can see each node as a program state and each
edge as an instruction.

For our analysis, we need to augment this CFG by adding
a weight (the diamond usage) to each instruction. This way
it becomes the Resource Control Graph [Moy09] (RCG) of
Figure 1. Note that if we drop the qualitative part of the
analysis, we don’t need the � type anymore as counting
variables of this type is equivalent to counting instructions
producing or consuming it. This, however, only provides a
proved bound on space usage but cannot actually remove
malloc and free from the program.

Using this RCG we can find the most expensive path
according to this weight. A maximum weighted path is quickly
computable with a classical algorithm such as Dijkstra’s or
Bellman-Ford’s. It’s equivalent to find the shortest paths in
a weighted graph. We also need to detect positive loop in a
polynomial time. Here we are in the case where we have a
single entry source. The Bellman-Ford algorithm can be used
here to provide the shortest path instead of the Dijkstra’s one
which is not able to deal with negative edge weights and detect
negative loop.

We understand that, because the analysis is only static, it’s
not accurate. We only consider the worst case to ensure the
NSI property, this is why we prefer to have false negatives
instead of false positives. Avoiding both is undecidable. . .
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Fig. 1. Resources Control Graph of the insertion sort

III. COMPILER INFRASTRUCTURE

Naively, a compiler translates a human-readable source code
into a non-user-friendly assembly code for machines. It takes
the opportunity to analyze and optimize the compiled program.
All these analysis and transformations are done on a typed
assembly like language: the Intermediate Representation.

Because this Intermediate Representation (IR) is a good
abstraction level we can do our analysis directly in compilers.
Compiler comes with a lot of tools working at different
compilation times. Compilers are designed to sequentially
make analysis and transformations called passes on the sources
code.

A. Compiler design

Compilers are generally composed of three parts:

Optimizer

Compiler

C ++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

• one front-end for each source language, it’s composed
by a lexer and a parser which finally build an IR. This
translation simplifies the job of the rest of the compiler
which doesn’t want to deal with each expressivity of each
programming language.

• a middle-end also called optimizer or Pass Manager
which provides information and/or transforms IR to se-
mantically equivalent IR supposed to be better/faster.



• and a back-end for each architecture which produces a
machine code.

The Intermediate Representation is pretty similar to an
assembly language. It’s a lower-level programming language
than the input one but it’s a higher-level than real assembly
language.

The optimizer (opt in LLVM) provides optimizations but
also analysis, both are called passes.

This optimizer is mainly composed by a Pass Manager
that keeps analysis information up to date, manages memory
used, enforces enabled passes with a given order and make
pass developer’s life simple thank to its modularity. These
passes visit and change the Intermediate Representation in
the middle-end.

The optimizer is one of the several tools or modules
provided by LLVM. Designed for more modularity, the op-
timizations are built into distinct libraries and the LLVM
Intermediate Representation is preserved permanently, making
it easy for other-ends to use them.

In our time, two mainly used compilers exist: GCC and
LLVM. For our first prototype, our choice was LLVM because:
first of all, LLVM is well documented; the community is huge
and very active; it uses the same Intermediate Representation
throughout the compilation; it’s modular; it’s more and more
used. For instance, more, and more efforts have been done to
build Debian with LLVM1.

By comparison, GCC remains more used but performances
and accessibility are equivalents. However the LLVM com-
munity’s documentation and help are more appropriate. The
modularity also helps to contribute without knowing the entire
working flow. The analysis are, of course, feasible in GCC,
Compcert2, etc. Compcert is a certified compiler using the
Coq proof assistant, it guarantees that any transformations
during the compilation cannot alter the program’s semantics.
The produced assembly will compute exactly what the source
said before compilation.

The LLVM Project [Lat02] is a collection of modular and
reusable compiler and tool chain technologies. LLVM is an
acronym for Low-Level Virtual Machine, but the scope of
the project is not limited to the creation of virtual machines.
As the scope of LLVM grew, it became an umbrella project
that included a variety of other compiler and low-level tool
technologies as well.

LLVM is almost well designed for our work because it:
• Offers modularity, simplicity and a good research envi-

ronment for compilers developers.
• Operates transparently to the developer.
• Provides a multi-stage optimization strategy.

B. LLVM IR, instruction set and Data structure

The LLVM Intermediate Representation is a Typed Assem-
bly Language (TAL) and a Static Single Assignment (SSA)
based representation which provides type safety, low-level

1sylvestre.ledru.info/blog/2014/09/11/rebuild-of-debian-using-clang-3-5
2compcert.inria.fr/compcert-C.html

operations, flexibility and capability to represent any high-
level languages cleanly. As we said, this representation is used
throughout all phases of the compilation in LLVM.

A lot of well known optimizations are already dealing with
this IR: Dead Code Elimination, Loop Invariant Code Motion,
Constant Propagation etc. . . for example: The Instruction
Combination Pass is one of the simplest passes. It knows some
optimizable patterns like “add X, 0→ X”, “xor X,X → 0”
etc. . . and can detect and replace them.

The LLVM Intermediate Representation is source-language-
independent, mainly because it uses a low-level instruction set
slightly richer than assembly languages, it’s a RISC-like virtual
instruction set. The instruction set consists of 31 opcodes, just
enough to don’t loose type expressivity but still a low-level
representation. Most of these operations are in a three-address
form: that’s means that they take one or two operands and
produce one result. But, unlike RISC instructions, LLVM-IR
is strictly typed, then type mismatch can easily be detected.
Types can be primitive or constructive (composed by several
primitive types or constructive types). Each instruction has
restrictions on the arguments types. Instructions can be poly-
morphic: for instance add can operate on different types, this
widely reduces the number of opcodes. Here, we will only be
interested in instructions for typed memory allocation.

The malloc instruction allocates one or more elements of
a specific type on the heap, returning a typed pointer to the
new memory. The free instruction releases memory allocated
through malloc. When the native code is generated, this
instructions are converted to the appropriate native function
calls, allowing also customizations. There are no implicit ac-
cesses to memory, this simplifies all memory access analysis.

LLVM has shown that an efficient low-level representation
enriched with type information can support high-level analysis
and transformations.

IV. RCG COMPUTATION AND POSITIVE LOOPS DETECTION

LLVM already builds the CFG of every function. LLVM
provides some tools to visit and match instructions targeted in
the entire graph given. This representation can give founda-
tions in order to create a new analysis.

Each node in the CFG represents a basic block, i.e. a
succession of instructions without any branching. Directed
edges are used to represent jumps. A CFG starts with one
entry-block and has one or several exit-blocks (or leaves). That
builds the structured programming concept.

The RCG can be built by traversing the entire CFG once
and counting the number of memories allocations and deallo-
cations on each node. This can be done independently of the
order of the blocks.

In order to do this, we use a LLVM tool: Basic Blocks
visitor which goes through each basic block on the CFG. We
can add a function to run for each basic block. Here we just
compute their weight and map this to be used by another pass.

Now we can compute the maximal weight or worst case
space that might be used by each function. We can use the



Bellman-Ford’s algorithm to find the heaviest path for our
weighted graph in a polynomial time.

Basic Blocks are stocked in a list in the Function Class and
not as a graph. We need to, recursively, travel through each
successor of blocks, starting with the entry one. To fill up this
new graph we will need to use a Depth-First Search to obtain
our nodes in the correct order.

If we reconsider the analysis, it just provides an answer to
the following question: “is the program NSI?”. We actually
don’t provide the accurate amount of space needed, but we
detect if this amount is fixed. That is, we need to detect
positive loops without regarding how many times they will
occur. Thus we consider all positive loops as occurred a non-
determined number of time. In fact we can be more precise by
detecting static loops and upper bounds but it already exists
passes that find invariants and unroll loops.

V. CONCLUSIONS AND FURTHER WORKS

We built a static analyzer in almost 250 lines of code mostly
because it reuses the LLVM’s environment and tools. It can
be split in two parts: the first builds a Resources Control
Graph and the second computes functions weights and detects
positives loops. This analysis has been tested on classical
lists manipulation such as reverse, concat, insertion
sort and quick sort. This tool can answer to the question
“Is this program NSI?” in some cases. It assumes that every
loops’ body will be executed an undecidable number of time
then it doesn’t provide accurate bounds.

Furthermore, if this analysis is done on the entire program,
it can be seen as a tool to detect memory leak. This work
is the beginning of the implementation of ICC theories into
widely used compilers.

A lot of work remains to be done. First of all, dependence
problems appear for non-analyzed functions called in the
current CFG. External libraries should be analyzed first and
results need to be kept somewhere to avoid recompilation,
maybe by using an annotated system like the Clang Language
Extensions3 or something similar for the Intermediate Rep-
resentation. It could be a great idea to provide an external
library like libc entirely certified with some Implicit Com-
plexity properties. Those properties would be attached with
the compiled library. Then, because it’s only added, this could
work on any pre-existent code. By this way we could globalize
the “proof-carrying code” [Nec97] movement.

Optimizations can be considered by introducing a type
diamond in a way to have more information about reusability
of each memory and by customizing the standard dynamic
allocations and deallocations. Elimination of malloc calls is
not a new idea [Hof00] but, as far as we know, it has never
been done in a real compiler. Here we can replace malloc
and free calls by our own instructions to just simulate them
without any system call.

We can also, by studying more accurately relations between
input and bounds [AAG+08], approximate a Space Complex-
ity [ASM13] and, maybe, the termination [LJBA01] because

3http://clang.llvm.org/docs/LanguageExtensions.html

this last work is also based on weighted Control Flow Graphs
or Resources Control Graphs [Moy09].
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