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Introduction

ICC deals with syntactic criterion that guarantee some
property (complexity bounds)
A lot of theories :

Bounded Recursion (A. Cobham)
Safe/Normal Recursion (S. Bellantoni and S. Cook)
Size-change and termination (C.S. Lee, N.D. Jones and
A.M. Ben-Amram), Quasi-interpretation and verification of
resources (J.Y. Marion, R. Amadio, G. Bonfante,
J.Y. Moyen, R. Péchoux), Polynomes MWP (L. Kristiansen
and N.D. Jones)
Non-Size-Increasing programs (M. Hofmann)
. . .
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Motivations 1/2

Most of them concern “toy languages”
20 years of ICC’s theories : time to fill the gap between
theories and actual programs
But real languages are complex. . .
A good language level : Intermediate Representations
A good start : Detection of NSI Programs
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Motivations 2/2

Compilers developers mainly focus on optimizations. . .
Analysis and Optimizations are not so far apart
Providing proven bounds on space and time : a safety and
a security property

A proof of concept to show that ICC and Compilers can fuel
each other
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Section 1

NSI Programs
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Non Size Increasing
Analogy with Space-RCG

Bounding Complexity

First idea of safe recursion from S. Bellantoni and S. Cook :
repeated iteration is a source of exponential growth

The study of Non Size Increasing was introduced by
M. Hofmann : “it’s not harmful to iterate function which does not
increase the size of its data”

We want to detect and to certify that a program computes (or
can compute) within a constant amount of space
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Non Size Increasing
Analogy with Space-RCG

NSI and Imperative programs

Hofmann detects non size increasing programs by adding
a special type ♦ which can be seen as the type of pointers
to free memory.

Example (insertion without ♦)

insert( y, []) -> cons( y, [])
insert( y, cons( x, xs)) ->

if x<y
then cons( x, (insert( y, xs)))
else cons( y, cons( x, xs))
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NSI and Imperative programs

Hofmann detects non size increasing programs by adding
a special type ♦ which can be seen as the type of pointers
to free memory.

Example (insertion with ♦)

insert(d, y, []) -> cons(d, y, [])
insert(d, y, cons(d’, x, xs)) ->

if x<y
then cons(d’, x, (insert(d, y, xs)))
else cons(d, y, cons(d’, x, xs))

simply, the constructor consumes one diamond d : ♦ then
exponentiation is not possible anymore
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CFG view

insert(d, y, []) -> cons(d,
y, [])

insert(d, y, cons(d’, x,
xs)) ->

if x<y
then cons(d’, x,

(insert(d, y,
xs)))

else cons(d, y,
cons(d’, x, xs))

Insert represented as CFG
(Control Flow Graph is a graph
composed of basic blocks
composed of basic instruc-
tions) :
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Analogy with Space-RCG

Add a weight (corresponding
to the space used by the
program) to the CFG and
we obtain the following RCG
(Resource Control Graph) :
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Introduction and Analysis
LLVM and Tools
Intermediate Representation

Section 2

Compilers and Intermediate Representation
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Analysis

To make some optimizations we need analysis
These optimizations and analysis are managed as passes
on the programs’ Intermediate Representation
(Gimple/RTL for GCC, LLVM IR for LLVM)

A lot of passes already exist. For instance in gcc :

$ gcc -c --help=optimizers -Q | wc -l
184
$ gcc -c -O --help=optimizers -Q | grep enabled | wc -l
76
$ gcc -c -O2 --help=optimizers -Q | grep enabled | wc -l
105
$ gcc -c -O3 --help=optimizers -Q | grep enabled | wc -l
112
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Analysis

A lot of passes already used by default :

$ gcc -fdump-tree-all -fdump-rtl-all loop.c -o loopgcc
$ ll loop.c.*
loop.c.001t.tu
loop.c.003t.original
loop.c.004t.gimple
loop.c.006t.vcg
...
loop.c.150r.expand
loop.c.151r.sibling
loop.c.153r.initvals
loop.c.154r.unshare
...
$ ll loop.c.* | wc -l
43

}Gimple

}RTL

A pass-manager stores data in memory from analysis made
previously for next ones.

13 / 25



NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Order

Order is given as argument to the pass manager :

$ llvm-as < /dev/null | opt -O3 -disable-output -debug-pass=Arguments
Pass Arguments: -targetlibinfo -no-aa -tbaa -scoped-noalias -assumption-tracker

-basicaa -notti -verify-di -ipsccp -globalopt -deadargelim -domtree
-instcombine -simplifycfg -basiccg -prune-eh -inline-cost -inline
-functionattrs -argpromotion -sroa -domtree -early-cse -lazy-value-info
-jump-threading -correlated-propagation -simplifycfg -domtree -instcombine
-tailcallelim -simplifycfg -reassociate -domtree -loops -loop-simplify -lcssa
-loop-rotate -licm -loop-unswitch -instcombine -scalar-evolution
-loop-simplify -lcssa -indvars -loop-idiom -loop-deletion -function_tti
-loop-unroll -memdep -mldst-motion -domtree -memdep -gvn -memdep -memcpyopt
-sccp -domtree -instcombine -lazy-value-info -jump-threading
-correlated-propagation -domtree -memdep -dse -adce -simplifycfg -domtree
-instcombine -barrier -domtree -loops -loop-simplify -lcssa -branch-prob
-block-freq -scalar-evolution -loop-vectorize -instcombine -scalar-evolution
-slp-vectorizer -simplifycfg -domtree -instcombine -loops -loop-simplify
-lcssa -scalar-evolution -function_tti -loop-unroll
-alignment-from-assumptions -strip-dead-prototypes -globaldce -constmerge
-verify -verify-di

A lot of passes are used to prepare optimizations or clean the

IR. (e.g. detection of
n∑

i=1
i is made by finding specific pattern)
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GCC and LLVM (and Compcert)

GCC LLVM

Performance = (+) =

Popular high ↗ (deb)

Old 28 years 12 years

Licensing GPLv3
University of Illinois/NCSA
Open Source License (no

copyleft) (and Tools)

Modular (−)? built for

Documentation (−)? +

Community ? Huge and active !

Contributions (2012) 16 commits/day,
470 devs, 7.3 Mlines

(2014) 34 commits/day,
2.6 Mlines 15 / 25
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LLVM Tools

LLVM framework comes with lot of tools to compile and
optimize code :

FileCheck count llvm-dis llvm-stress
FileUpdate diagtool llvm-dwarfdump llvm-symbolizer
arcmt-test fpcmp llvm-extract llvm-tblgen
bugpoint llc llvm-link macho-dump
c-arcmt-test lli llvm-lit modularize
c-index-test lli-child-target llvm-lto clang
llvm-PerfectSf llvm-mc obj2yaml clang++
llvm-ar llvm-mcmarkup opt not
llvm-as llvm-nm pp-trace llvm-size
clang-check llvm-bcanalyzer llvm-objdump rm-cstr-calls
clang-format llvm-c-test llvm-ranlib tool-template
clang-modernize llvm-config llvm-readobj yaml2obj
clang-tblgen llvm-cov llvm-rtdyld

LLVM offers good structures and tools to easily navigate
and manage Instructions
Create a module with a pass is pretty simple
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LLVM Intermediate Representation

LLVM-IR is a Typed Assembly Language (TAL) and a Static
Single Assignment (SSA) based representation. This
provides :

type safety
low-level operations
flexibility
capability to represent high-level languages “cleanly”

An IR is source-language-independent, then optimizations
and analysis should work on every languages (properly
translated to this IR).
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Instruction set

LLVM-IR has a RISC-like instruction set :

Terminator Bin Operator Bitwise Operator Stack and addressing other . . .
ret add shl/r alloca phi
br sub and load select

switch mul or store call
invoke div xor getelementptr icmp

. . . . . . . . . . . . . . .

Focus on the call instruction able to call libc allocation
function (free and malloc).
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IR in memory

We go over LLVM data structures through iterators :

Iterator over a Module
gives a list of Function

Iterator over a Function
gives a list of
BasicBlock

Iterator over a Basic
Block gives a list of
Instruction

Iterator over an
Instruction gives a list of
Operands

//iterate on each module’s functions
for(Module_Iterator F=M.begin(), Fe=M.end();

F!=Fe; ++F){
//iterate on each function’s basic block
for(Function_Iterator b=F.begin(),

be=F.end(); b!=be; ++b){
//iterate on each BB’s instructions
for(BasicBlock_Iterator I=b->begin(),

ie=b->end(); I!=ie; ++I){
...
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Section 3

Our analysis, Demos and Conclusions
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RCG and positive loop detection
Demos
Conclusion and future work

Building RCG

In our case we want to build a RCG and find the heaviest path
regarding to allocation memory.

LLVM tools already provide the CFG 1. . .
We can compute the weight of each Basic Block by
counting number of allocation on. . .

1. Recall : A CFG starts with one entry-block and has several exit-blocks,
that builds the structured programming concept

21 / 25



NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

RCG and positive loop detection
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Conclusion and future work

Bellman-Ford’s Algorithm

we can calculate the heaviest path and detect positive loops
with the Bellman-Ford’s Algorithm

1 Initialization :
set all vertices to minus infinite weight except the first one

2 Relaxation of each vertices starting from the first one :
take the highest weight regarding to all the edges
converging toward this node

3 Check for positive-weight cycle :
if one edge u → v with a weight w has
weight [u] + w > weight [v ] it’s a positive cycle
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Is the program NSI ?

This analysis just provide an answer to the question “Is the
program/function NSI ?”.
We consider all positives loops as occurred a non-determined
number of time.
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Conclusion

We built a static analyzer in almost 200 lines of code
thanks to the modularity of the compiler.
It can be seen as two passes : the first one build a RCG
(reusable) and the second detect positive loops.
tested on reverse, concat, insertion sort and
quick sort.
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A lot of work remains to be done

find dependence between each source file
every libraries used should have been analyzed before
customizing standard dynamic allocations and deallocation
approximate a space complexity and maybe the
termination
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