
NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Detection of Non-Size Increasing Programs in
Compilers

Implementation of Implicit Complexity Analysis

Jean-Yves Moyen1 Thomas Rubiano2

1Department of Computer Science
University of Copenhagen (DIKU)

Supported by the Marie Curie action “Walgo” program H2020-MSCA-IF-2014,
number 655222

2Laboratoire Informatique Paris Nord
Université Paris 13 & University of Copenhagen (DIKU)

PhD funded by the ELICA ANR project (ANR-14-CE25-0005)

6 avril 2016
1 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction

ICC deals with syntactic criterion that guarantee some
property (complexity bounds)
A lot of theories :

Bounded Recursion (A. Cobham)
Safe/Normal Recursion (S. Bellantoni and S. Cook)
Size-change and termination (C.S. Lee, N.D. Jones and
A.M. Ben-Amram), Quasi-interpretation and verification of
resources (J.Y. Marion, R. Amadio, G. Bonfante,
J.Y. Moyen, R. Péchoux), Polynomes MWP (L. Kristiansen
and N.D. Jones)
Non-Size-Increasing programs (M. Hofmann)
. . .

2 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Motivations 1/2

Most of them concern “toy languages”
20 years of ICC’s theories : time to fill the gap between
theories and actual programs
But real languages are complex. . .
A good language level : Intermediate Representations
A good start : Detection of NSI Programs

3 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Motivations 2/2

Compilers developers mainly focus on optimizations. . .
Analysis and Optimizations are not so far apart
Providing proven bounds on space and time : a safety and
a security property

A proof of concept to show that ICC and Compilers can fuel
each other

4 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Motivations 2/2

Compilers developers mainly focus on optimizations. . .
Analysis and Optimizations are not so far apart
Providing proven bounds on space and time : a safety and
a security property

A proof of concept to show that ICC and Compilers can fuel
each other

4 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Non Size Increasing
Analogy with Space-RCG

Section 1

NSI Programs

5 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Non Size Increasing
Analogy with Space-RCG

Bounding Complexity

First idea of safe recursion from S. Bellantoni and S. Cook :
repeated iteration is a source of exponential growth

The study of Non Size Increasing was introduced by
M. Hofmann : “it’s not harmful to iterate function which does not
increase the size of its data”

We want to detect and to certify that a program computes (or
can compute) within a constant amount of space

6 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Non Size Increasing
Analogy with Space-RCG

NSI and Imperative programs

Hofmann detects non size increasing programs by adding
a special type ♦ which can be seen as the type of pointers
to free memory.

Example (insertion without ♦)

insert(y, []) -> cons(y, [])
insert(y, cons(x, xs)) ->

if x<y
then cons(x, (insert(y, xs)))
else cons(y, cons(x, xs))

7 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Non Size Increasing
Analogy with Space-RCG

NSI and Imperative programs

Hofmann detects non size increasing programs by adding
a special type ♦ which can be seen as the type of pointers
to free memory.

Example (insertion with ♦)

insert(d, y, []) -> cons(d, y, [])
insert(d, y, cons(d’, x, xs)) ->

if x<y
then cons(d’, x, (insert(d, y, xs)))
else cons(d, y, cons(d’, x, xs))

simply, the constructor consumes one diamond d : ♦ then
exponentiation is not possible anymore

7 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Non Size Increasing
Analogy with Space-RCG

CFG view

insert(d, y, []) -> cons(d,
y, [])

insert(d, y, cons(d’, x,
xs)) ->

if x<y
then cons(d’, x,

(insert(d, y,
xs)))

else cons(d, y,
cons(d’, x, xs))

Insert represented as CFG
(Control Flow Graph is a graph
composed of basic blocks
composed of basic instruc-
tions) :

0

1 2

3

45

67

end

l = []

cons()

l 6= []

tail()

x < yx ≥ y

cons()cons()

cons()

8 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Non Size Increasing
Analogy with Space-RCG

Analogy with Space-RCG

Add a weight (corresponding
to the space used by the
program) to the CFG and
we obtain the following RCG
(Resource Control Graph) :

0

1 2

3

45

67

end

l = []

+1

l 6= []

-1

x < yx ≥ y

+1+1

+1

9 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Section 2

Compilers and Intermediate Representation

10 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Principles

Optimizer

Compiler

C++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

11 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Principles

Optimizer

Compiler

C++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

11 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Principles

Optimizer

Compiler

C++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

11 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Principles

Optimizer

Compiler

C++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

11 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Principles

Optimizer

Compiler

C++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

11 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Analysis

To make some optimizations we need analysis
These optimizations and analysis are managed as passes
on the programs’ Intermediate Representation
(Gimple/RTL for GCC, LLVM IR for LLVM)

A lot of passes already exist. For instance in gcc :

$ gcc -c --help=optimizers -Q | wc -l
184
$ gcc -c -O --help=optimizers -Q | grep enabled | wc -l
76
$ gcc -c -O2 --help=optimizers -Q | grep enabled | wc -l
105
$ gcc -c -O3 --help=optimizers -Q | grep enabled | wc -l
112

12 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Analysis

A lot of passes already used by default :

$ gcc -fdump-tree-all -fdump-rtl-all loop.c -o loopgcc
$ ll loop.c.*
loop.c.001t.tu
loop.c.003t.original
loop.c.004t.gimple
loop.c.006t.vcg
...
loop.c.150r.expand
loop.c.151r.sibling
loop.c.153r.initvals
loop.c.154r.unshare
...
$ ll loop.c.* | wc -l
43

}Gimple

}RTL

A pass-manager stores data in memory from analysis made
previously for next ones.

13 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Order

Order is given as argument to the pass manager :

$ llvm-as < /dev/null | opt -O3 -disable-output -debug-pass=Arguments
Pass Arguments: -targetlibinfo -no-aa -tbaa -scoped-noalias -assumption-tracker

-basicaa -notti -verify-di -ipsccp -globalopt -deadargelim -domtree
-instcombine -simplifycfg -basiccg -prune-eh -inline-cost -inline
-functionattrs -argpromotion -sroa -domtree -early-cse -lazy-value-info
-jump-threading -correlated-propagation -simplifycfg -domtree -instcombine
-tailcallelim -simplifycfg -reassociate -domtree -loops -loop-simplify -lcssa
-loop-rotate -licm -loop-unswitch -instcombine -scalar-evolution
-loop-simplify -lcssa -indvars -loop-idiom -loop-deletion -function_tti
-loop-unroll -memdep -mldst-motion -domtree -memdep -gvn -memdep -memcpyopt
-sccp -domtree -instcombine -lazy-value-info -jump-threading
-correlated-propagation -domtree -memdep -dse -adce -simplifycfg -domtree
-instcombine -barrier -domtree -loops -loop-simplify -lcssa -branch-prob
-block-freq -scalar-evolution -loop-vectorize -instcombine -scalar-evolution
-slp-vectorizer -simplifycfg -domtree -instcombine -loops -loop-simplify
-lcssa -scalar-evolution -function_tti -loop-unroll
-alignment-from-assumptions -strip-dead-prototypes -globaldce -constmerge
-verify -verify-di

A lot of passes are used to prepare optimizations or clean the

IR. (e.g. detection of
n∑

i=1
i is made by finding specific pattern)

14 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

GCC and LLVM (and Compcert)

GCC LLVM

Performance = (+) =

Popular high ↗ (deb)

Old 28 years 12 years

Licensing GPLv3
University of Illinois/NCSA
Open Source License (no

copyleft) (and Tools)

Modular (−)? built for

Documentation (−)? +

Community ? Huge and active !

Contributions (2012) 16 commits/day,
470 devs, 7.3 Mlines

(2014) 34 commits/day,
2.6 Mlines 15 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

LLVM Tools

LLVM framework comes with lot of tools to compile and
optimize code :

FileCheck count llvm-dis llvm-stress
FileUpdate diagtool llvm-dwarfdump llvm-symbolizer
arcmt-test fpcmp llvm-extract llvm-tblgen
bugpoint llc llvm-link macho-dump
c-arcmt-test lli llvm-lit modularize
c-index-test lli-child-target llvm-lto clang
llvm-PerfectSf llvm-mc obj2yaml clang++
llvm-ar llvm-mcmarkup opt not
llvm-as llvm-nm pp-trace llvm-size
clang-check llvm-bcanalyzer llvm-objdump rm-cstr-calls
clang-format llvm-c-test llvm-ranlib tool-template
clang-modernize llvm-config llvm-readobj yaml2obj
clang-tblgen llvm-cov llvm-rtdyld

LLVM offers good structures and tools to easily navigate
and manage Instructions
Create a module with a pass is pretty simple

16 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

LLVM Tools

LLVM framework comes with lot of tools to compile and
optimize code :

FileCheck count llvm-dis llvm-stress
FileUpdate diagtool llvm-dwarfdump llvm-symbolizer
arcmt-test fpcmp llvm-extract llvm-tblgen
bugpoint llc llvm-link macho-dump
c-arcmt-test lli llvm-lit modularize
c-index-test lli-child-target llvm-lto clang
llvm-PerfectSf llvm-mc obj2yaml clang++
llvm-ar llvm-mcmarkup opt not
llvm-as llvm-nm pp-trace llvm-size
clang-check llvm-bcanalyzer llvm-objdump rm-cstr-calls
clang-format llvm-c-test llvm-ranlib tool-template
clang-modernize llvm-config llvm-readobj yaml2obj
clang-tblgen llvm-cov llvm-rtdyld

LLVM offers good structures and tools to easily navigate
and manage Instructions
Create a module with a pass is pretty simple

16 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

LLVM Intermediate Representation

LLVM-IR is a Typed Assembly Language (TAL) and a Static
Single Assignment (SSA) based representation. This
provides :

type safety
low-level operations
flexibility
capability to represent high-level languages “cleanly”

An IR is source-language-independent, then optimizations
and analysis should work on every languages (properly
translated to this IR).

17 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

Instruction set

LLVM-IR has a RISC-like instruction set :

Terminator Bin Operator Bitwise Operator Stack and addressing other . . .
ret add shl/r alloca phi
br sub and load select

switch mul or store call
invoke div xor getelementptr icmp

.

Focus on the call instruction able to call libc allocation
function (free and malloc).

18 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

Introduction and Analysis
LLVM and Tools
Intermediate Representation

IR in memory

We go over LLVM data structures through iterators :

Iterator over a Module
gives a list of Function

Iterator over a Function
gives a list of
BasicBlock

Iterator over a Basic
Block gives a list of
Instruction

Iterator over an
Instruction gives a list of
Operands

//iterate on each module’s functions
for(Module_Iterator F=M.begin(), Fe=M.end();

F!=Fe; ++F){
//iterate on each function’s basic block
for(Function_Iterator b=F.begin(),

be=F.end(); b!=be; ++b){
//iterate on each BB’s instructions
for(BasicBlock_Iterator I=b->begin(),

ie=b->end(); I!=ie; ++I){
...

19 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

RCG and positive loop detection
Demos
Conclusion and future work

Section 3

Our analysis, Demos and Conclusions

20 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

RCG and positive loop detection
Demos
Conclusion and future work

Building RCG

In our case we want to build a RCG and find the heaviest path
regarding to allocation memory.

LLVM tools already provide the CFG 1. . .
We can compute the weight of each Basic Block by
counting number of allocation on. . .

1. Recall : A CFG starts with one entry-block and has several exit-blocks,
that builds the structured programming concept

21 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

RCG and positive loop detection
Demos
Conclusion and future work

Bellman-Ford’s Algorithm

we can calculate the heaviest path and detect positive loops
with the Bellman-Ford’s Algorithm

1 Initialization :
set all vertices to minus infinite weight except the first one

2 Relaxation of each vertices starting from the first one :
take the highest weight regarding to all the edges
converging toward this node

3 Check for positive-weight cycle :
if one edge u → v with a weight w has
weight [u] + w > weight [v] it’s a positive cycle

22 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

RCG and positive loop detection
Demos
Conclusion and future work

Is the program NSI ?

This analysis just provide an answer to the question “Is the
program/function NSI ?”.
We consider all positives loops as occurred a non-determined
number of time.

23 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

RCG and positive loop detection
Demos
Conclusion and future work

Conclusion

We built a static analyzer in almost 200 lines of code
thanks to the modularity of the compiler.
It can be seen as two passes : the first one build a RCG
(reusable) and the second detect positive loops.
tested on reverse, concat, insertion sort and
quick sort.

24 / 25

NSI Programs
Compilers and Intermediate Representation

Our analysis, Demos and Conclusions

RCG and positive loop detection
Demos
Conclusion and future work

A lot of work remains to be done

find dependence between each source file
every libraries used should have been analyzed before
customizing standard dynamic allocations and deallocation
approximate a space complexity and maybe the
termination

25 / 25

	NSI Programs
	Non Size Increasing
	Analogy with Space-RCG

	Compilers and Intermediate Representation
	Introduction and Analysis
	LLVM and Tools
	Intermediate Representation

	Our analysis, Demos and Conclusions
	RCG and positive loop detection
	Demos
	Conclusion and future work

