


message of the form that some honest agent is expecting to receive, or whether
he is able to obtain a message that is intended to be a secret, e.g. a key shared
by two honest agents.

In this paper, we focus on the intruder deduction problem in the presence
of algebraic equations that express properties of cryptographic operators. The
underlying intruder model we employ is that of Dolev and Yao [19], in which



cryptography). These bounds control the complexity of the equational unification
problems that arise, transforming undecidable problems into decidable ones.
Moreover, these bounds effectively serve as search parameters that can be used
to control the search over the space of messages.

Our framework is thus parameterized by algebraic theories of the two kinds
above and provides a general algorithm for the algebraic intruder deduction
problem when the depth of message terms and the analysis operations of the
intruder are bounded. Our framework allows us to identify several sub-problems
of the intruder deduction problem (e.g. the reduction of terms to their normal
forms) and provide general algorithms for them. Along the way, we also show
that the problems considered become undecidable when any of the restrictions
made in our framework are removed.

Two remarks are in order to help put into context our use of depth param-
eters. First, rather than considering specialized theories of algebraic properties



symbols of arity n. Terms in Σ0 are constants (i.e. nullary function symbols) and
represent atomic messages like agent names or nonces. We define the depth of a
term t as the number of nodes in the longest path from the root to a leaf in its
tree representation, and the size of t



domain(θ). Given a set S of substitutions, S0



Definition 2. Given a finite set of ground terms IK (for “intruder knowledge”)
and an equational theory E, we define DYE(IK ) (for “Dolev-Yao”) as the least
set that is closed under the rules



〈t1,t2〉 of two messages t1 and t2, modular exponentiation exp(t1, t2) of a message
t1 with a message t2, and bitwise xor t1 ⊕ t2 of a message t1 with a message t2



We can then, for example, prove that Fex is an FEC theory and Cex is a



Definition 5. We call a bounded variable a variable for which only terms with





derivations modulo F ∪ C. In particular, given a set IK of ground terms, we



knows the messages {|m|}〈k1,k2〉 and k1 and k2, then he can analyze the encrypted
message, but only after synthesizing the key 〈k1,k2〉. We now define a general
notion of analysis based on an arbitrary cancellation theory C.

Intuitively, we speak of synthesis when the intruder applies the OP rule to
compose terms, excluding the case when the resulting composed term is a redex
according to the cancellation theory C (as we can then reduce it to a simpler
term). We speak of



Theorem 4. There is an FEC theory F





the protocol analysis problem, along with other parameters like the number of
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