A Security Protocol Animator Tool for AVISPA

Yann Glouche!, Thomas Genet!, Olivier Heen?, Olivier Courtay?

L TRISA-INRIA, Rennes, France
yann.glouche@irisa.fr
thomas.genet@irisa.fr

2 Thomson R&D France, Security Lab
olivier.heen@thomson.net
olivier.courtay@thomson.net

Abstract. Avispa is now a commonly used verification tool for cryp-
tographic protocols. The main advantage of this tool is the ability to
use different verification techniques on the same protocol specification.
In this paper, we present a protocol animator designed to help proto-
col developers in writing AVISPA specifications. This is the result of an
ongoing joint experiment with Thomson R&D to use AVISPA at early
stages of protocol development.

1 The Need for a protocol animator in AVISPA System

In the AVISPA tool, protocols are specified using the High Level Pro-
tocol Specification Language (HLPSL for short [1]). Then, the HLPSL
specification is translated into an Intermediate Format (IF) which is used
by the various verification tools embedded in AVISPA : OFMC the On-
the-Fly Model-Checker [2], CL Constraint-Logic-based model-checker [3],
SATMC SAT-based Model-Checker [4], and TA4SP Tree Automata based
on automatic approximations For the analysis of Security Protocols [5].
Figure 1 depicts the overall architecture of the system.

Since HLPSL is a far more expressive language than basic ” Alice &
Bob” notation, writing HLPSL specification is still not an easy task. In
HLPSL, protocols are defined role by role rather than message by mes-
sage like it is done using ”Alice & Bob” notation. As a result, HLPSL
specifications are far less ambiguous but more difficult to read. Thus, it is
sometimes difficult for the protocol designers to figure out if the HLPSL
specification they wrote corresponds to the ” Alice & Bob” protocol they
had in mind.

In this paper, we present a tool for animating HLPSL specifications,
i.e. interactively produce Message Sequence Charts (MSC for short) which
can be seen as an ” Alice & Bob” trace from an HLPSL specification.

High-Level Protocol Specification Language (HLPSL) » Protocol graphical animation
Tanslator
v HLPSL2IF
Intermediate Format (IF)
p /
On-the-fly Model-Checker CL-based Model-Checker SAT-based Model-Checker TASP

Fig. 1. The overall AVISPA system architecture.

2 The protocol animator

Protocol specifications in HLPSL are divided into roles. The basic roles,
describe the actions of principals in an execution of the protocol. Other
roles, namely composed roles, instantiate several of these basic roles to
model sessions of the protocol. Finally, the environment role defines the
effective principals and sessions whose execution is to consider.

Here is an example of a basic role decalaration extracted from the HLPSL
specification of the Needham-Shroeder protocol with symmetric keys :

role a(A : agent, Ka, Kb : symmetric_key,
SND, RCV : channel(dy))
played_by A def=
local State : nat, Na, Nb : text, B : agent
init State:=0
transition
stepl. State=0 /\ RCV(start)
=|> State’:=1 /\ Na’:=new() /\ SND({Na’.A}_Kb)
step2. State=1 /\ RCV({Na.Nb’}_Ka)
=|> State’:=2 /\ SND({Nb’}_Kb)
end role

role b(B : agent, Ka, Kb : symmetric_key,
SND, RCV : channel(dy))
played_by B def=
local State : nat, Na,Nb : text, A : agent
init State:=0
transition
stepl. State=0 /\ RCV({Na’.A’}_Kb)

=|> State’:=1 /\ SND({Na’.Nb’}_Ka)
step2. State=1 /\ RCV({Nb}_Kb)
=|> State’:=2
end role

Two decalarations of composed role :

role session(A, B : agent, KaA, KbA, KaB, KbB : symmetric_key)
def=
local S_A, R_A, S_B, R_B : channel(dy)
composition
a(A, KaA, KbB, S_A, R_A)
/\ b(B, KaB, KbB, S_B, R_B)
end role

role environment ()
def=
const alice, bob : agent, ka, kb : symmetric_key
intruder_knowledge={alice, bob}
composition
session(alice, bob, ka, kb, ka, kb)
/\ session(alice, bob, ka, kb, ka, kb)
end role
environment ()

In the example, the composed role session describes a single session of the
protocol. The composed role environment defines two parallel sessions.

Starting from such an HLPSL specification, the protocol animator
helps to build one possible MSC corresponding to that specification. The
animator can represent one or more sessions of the protocol in paral-
lel according to the informations given in the role environment. Then,
MSCs are produced interactively with the user. At every moment, the
animator proposes to the user to choose between all the transitions for
which a message can be sent by a principal and received by another. This
approach makes it possible to resolve interactively all the choices that
may arise during the construction of MSC (Non-deterministic protocols,
choices between two transitions to trigger in two different sessions etc...).
The execution of a protocol’s transition generally adds a transition on the

MSC.

The protocol animator also includes the possibility to check the values,
at every moment, of the variables of each principals : the user chooses the
variables of each roles he wants to monitor.

The tool can save an execution trace corresponding to the execution
of the protocol supervised by the user, and it is possible to reload it. The
MSC can be exported in postscript format or PDF format.

3 Experiments

We have applied the animator to several protocols : all the protocols of
the AVISPA Library, and a new protocol developed by Thomson called
User Supervised Device Pairing (USDP for short) [6] for the secure device
pairing.

Figure 2 depicts the protocol animator during the execution of Need-
ham Shroeder procotol previously described. The top-left frame contains
the incoming event, the bottom-left frame contains the past events, and
the right frame contains the MSC.

Protocol Simulation : needhamSchroeder.txt 1)
Trace Files Modes Variables monitoring MsC
| crrevioussien | Nextstap> | 1 Uniyped varlables - b - - £
Incoring events :
[E[ta, 35 == (b, 31 : scryptikb,hb) scrypt Kb, pair(ha,al]
scrypt (Kb, pair(Na, A}
scryptika, pairina, b))
scrypt(Ka,pairiia,ib)}
seryptikb, b}
&l
Past events :
[5[(a, 3% - (b, 4% i scrypt(kb,pairiNa,Ab}
(3, 61 -> (b, 70 @ scrypt(Kb,pairiNa,A))
(b, 70 -> {a, 6} : scryptiKa,pairila, b))
(b, &) -» (a, 30 @ scryptika,pairiNa, b))
(a, 6) -» (b, 70 : scrypt(Kb,Nb)
N -

Fig. 2. Graphical interface of the protocol animator.

For all the protocols, the graphical animation corresponds to their
specification. The USDP protocol uses three principals : two devices, and
a human whose role is to control the execution of the protocol by ob-
serving LEDS and by pushing buttons on devices. The devices are two
differents instances of a same role specified in HLPSL. This particularity
introduce non-determinism, and a lot of choices during the execution for
the user of the animator (for example : the possibility to execute an ac-
tion before another). During the meetings we had with Thomson protocol
designers, we used the HLPSL protocol animator to interactively produce
MSCs and tune the HLPSL specification to what they expected of the
protocol. This permits to quickly reveal and correct misunderstandings
remaining in the specification, despite we already agreed on its HLPSL
text. We also observed that using the animator gives more confidence
to the protocol designers on the final HLPSL specification. Finally, the
MSCs commonly used by those engineers in the technical documents and
patents on protocols can be produced automatically by the animator from
the interactive animation of the HLPSL specification.

Figure 3 depicts the MSC obtained with the animator protocol after
the complete execution of the Thomson’s USDP protocol corresponding
to the following trace.

(user, 3)->(device, 4) : pair(PUSH,A)
(device, 4)->(user, 3) : pair(WAIT,D)
(user, 3)->(device, 5) : pair(PUSH,B)
(device, 4)->(device, 5) : pair(exp(G,X),Kpuba)
(device, 5)->(device, 4) : pair(exp(G,Y),
pair(scrypt(exp(Ch,Y),
crypt (inv (Kpubb),
pair(Ch,exp(G,Y)))
), Kpubb))
(device, 4)->(device, 5) : scrypt(exp(ReCh,X),
crypt (inv (Kpuba) ,
pair(exp(G,X) ,ReCh)))
(device, 5)->(user, 3) : pair(PREFINAL,D)
(user, 3)->(device, 5) : pair(PUSH,B)
(user, 3)->(device, 4) : pair(PUSH,A)

4 Further Work

Some features of HLPSL are not yet taken into account. In fact, the
aggregate types : tuples, list, and sets and all functions relating to this

{user, 3} (device, 4) [device, 5}

pair(PUSH,A)
=
UserState : 0
pair(waIT, D)
-
.. Emizssion(palriexg (G, X}, Kpubai]ttit, .,
pairifIsH, B}
=
UserState : 2
pairiexpiG,x),Kpuba)
pairiexpiG,¥},pairisqryptexpiCh,¥), cryptiiny (Kpubb},pairigh,exp(G,¥!}1}},Kpubb}
=
scrypt (exp (ReCh, X}, cryptiinv (Kpuba),pair(exp (G, X}, ReCh}}}
=
pair(PREFINAL,D}
=
UserState : 3
pairiAfUsH, B}
=
pair(PUSH, A}
==

Fig. 3. MSC obtained after the execution of Thomson’s USDP protocol

types (cons, in, delete), are not yet treated by the animator. The function
new() is not fully managed. We hope to solve these problems soon.

Furthermore, to determine which messages can be sent by a principal
and received by another, a correct treatment of mathematical functions
is necessary to compare the sent message and the received message. This
is not yet fully functional when messages include exp, zor.

As soon as possible we will integrate a mode to replay interactively
the attacks. For this, we want to refine the animator in order to be able
to execute an intruder role who can receive, replay, and treat all messages
sent by an agent to another.

References

1. D.von Oheimb. The High-Level Protocol Specification Language HLPSL devel-
oped in the EU project AVISPA. In Proceedins os APPSEM 2005 Workshop,
September 13, 2005.

2. D.Basin,S.Md&dersheim,L.Vigano. A symbolic model checker for security por-
tocols. International Journal of Information Security 4(3):181:208, 2005.

. M.Turuani. Securite des Protocoles Cryptographiques : Decidabilite et Complezite.
Phd, Universite Henri Poincare, Nancy, December 2003.

. A.Armando. SAT-based Model-Checking of Security Protocols. PhD Thesis, Uni-
versita degli Studi di Genova and the University of Edinburg, September2005.

. Y.Boichut, P-C.0.Kouchnarenko, F.Oehl. Improvements ont the Genet and
Klay Technic to Automatically Verify Security Protocols.

In Proc.AVIS’04, ENTCS.

. 0.Courtay, O.Heen, M.Karroumi, A.Durand. Secure device pairing under
realistic conditions. Applied Cryptography and Network Security (ACNS’06).

. AVISPA. Deliverable 2.8 : The Intermediate Format.

http://avispa-project.org/publications.html, 2003.
. AVISPA. The AVISPA User Manual http://avispa-project.org/publications
-html, 2005.

