Solving ../../benchmarks/smtlib/true/timbuk_plus_even.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: Some(60.) (sec) Teacher_type: Checks all clauses every time Approximation method: remove every clause that can be safely removed Learning problem is: env: { nat -> {s, z} } definition: { (is_even, P: { is_even(z) <= True is_even(s(s(n3))) <= is_even(n3) is_even(n3) <= is_even(s(s(n3))) False <= is_even(s(z)) } ) (plus, F: { plus(n, z, n) <= True plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) } eq_nat(_im, _jm) <= plus(_gm, _hm, _im) /\ plus(_gm, _hm, _jm) ) } properties: { is_even(_km) <= plus(x, x, _km) } over-approximation: {plus} under-approximation: {is_even} Clause system for inference is: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Solving took 0.325554 seconds. Yes: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ _r_1(x_1_0) /\ _r_1(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ is_even(x_1_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_1_0) /\ is_even(x_0_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) /\ is_even(x_0_0) /\ is_even(x_1_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) /\ _r_1(x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_0_0) /\ is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.010937 s (model generation: 0.010895, model checking: 0.000042): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { } Current best model: |_ name: None is_even -> [ is_even : { } ] ; plus -> [ plus : { } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : Yes: { n -> z } is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : No: () is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 1, which took 0.013957 s (model generation: 0.013816, model checking: 0.000141): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { plus(z, z, z) <= True } Current best model: |_ name: None is_even -> [ is_even : { } ] ; plus -> [ plus : { plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : Yes: { n -> s(_isnbd_0) } is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> z ; mm -> z ; n -> z } is_even(_km) <= plus(x, x, _km) : Yes: { _km -> z ; x -> z } ------------------------------------------- Step 2, which took 0.018090 s (model generation: 0.017989, model checking: 0.000101): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(z) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True } Current best model: |_ name: None is_even -> [ is_even : { is_even(z) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : Yes: { n3 -> z } is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(_psnbd_0) ; mm -> z ; n -> s(_rsnbd_0) } is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 3, which took 0.017048 s (model generation: 0.016956, model checking: 0.000092): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True } Current best model: |_ name: None is_even -> [ is_even : { is_even(s(x_0_0)) <= True is_even(z) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : Yes: { } plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : No: () is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 4, which took 0.031733 s (model generation: 0.031569, model checking: 0.000164): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(z)) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= True is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : Yes: { n3 -> s(z) } False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : No: () is_even(_km) <= plus(x, x, _km) : Yes: { _km -> s(z) ; x -> s(_wsnbd_0) } ------------------------------------------- Step 5, which took 0.019717 s (model generation: 0.019557, model checking: 0.000160): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(z), s(z), s(z)) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(s(z)) ; mm -> z ; n -> s(_htnbd_0) } is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 6, which took 0.019986 s (model generation: 0.019670, model checking: 0.000316): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(z), s(z), s(z)) plus(s(z), s(z), s(s(s(z)))) <= plus(s(z), z, s(s(z))) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : Yes: { n -> s(s(z)) } is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(s(z)) ; mm -> s(_ytnbd_0) ; n -> s(_ztnbd_0) } is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 7, which took 0.028299 s (model generation: 0.028039, model checking: 0.000260): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(s(z)), s(s(s(z)))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(z), s(z), s(z)) plus(s(z), s(z), s(s(s(z)))) <= plus(s(z), z, s(s(z))) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_1_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(s(z)) ; mm -> z ; n -> s(s(z)) } is_even(_km) <= plus(x, x, _km) : Yes: { _km -> s(z) ; x -> s(s(z)) } ------------------------------------------- Step 8, which took 0.025728 s (model generation: 0.024709, model checking: 0.001019): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(s(z)), s(z), s(s(s(z)))) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(s(z)), s(s(s(z)))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(s(z)), s(s(z)), s(z)) False <= plus(s(z), s(z), s(z)) plus(s(z), s(z), s(s(s(z)))) <= plus(s(z), z, s(s(z))) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ is_even(x_1_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_1_0) /\ is_even(x_0_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(s(z)) ; mm -> s(s(z)) ; n -> s(z) } is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 9, which took 0.024971 s (model generation: 0.023086, model checking: 0.001885): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(s(z)), s(z), s(s(s(z)))) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(s(z)), s(s(s(z)))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(s(z)), s(s(z)), s(z)) plus(s(z), s(s(s(z))), s(s(s(z)))) <= plus(s(z), s(s(z)), s(s(z))) False <= plus(s(z), s(z), s(z)) plus(s(z), s(z), s(s(s(z)))) <= plus(s(z), z, s(s(z))) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ is_even(x_1_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_1_0) /\ is_even(x_0_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) /\ is_even(x_1_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(s(z)) ; mm -> s(z) ; n -> s(s(z)) } is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 10, which took 0.030584 s (model generation: 0.027517, model checking: 0.003067): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(s(z)), s(z), s(s(s(z)))) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(s(z)), s(s(s(z)))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(s(z)), s(s(z)), s(z)) plus(s(s(z)), s(s(z)), s(s(s(z)))) <= plus(s(s(z)), s(z), s(s(z))) plus(s(z), s(s(s(z))), s(s(s(z)))) <= plus(s(z), s(s(z)), s(s(z))) False <= plus(s(z), s(z), s(z)) plus(s(z), s(z), s(s(s(z)))) <= plus(s(z), z, s(s(z))) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ is_even(x_1_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_1_0) /\ is_even(x_0_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) /\ is_even(x_0_0) /\ is_even(x_1_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(z) ; mm -> s(z) ; n -> s(s(z)) } is_even(_km) <= plus(x, x, _km) : No: () ------------------------------------------- Step 11, which took 0.038789 s (model generation: 0.033280, model checking: 0.005509): Clauses: { plus(n, z, n) <= True -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) -> 0 is_even(_km) <= plus(x, x, _km) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(s(z)), s(z), s(s(s(z)))) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(s(z)), s(s(s(z)))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(s(z)), s(s(z)), s(z)) plus(s(s(z)), s(s(z)), s(s(s(z)))) <= plus(s(s(z)), s(z), s(s(z))) plus(s(s(z)), s(s(z)), s(s(z))) <= plus(s(s(z)), s(z), s(z)) plus(s(z), s(s(s(z))), s(s(s(z)))) <= plus(s(z), s(s(z)), s(s(z))) False <= plus(s(z), s(z), s(z)) plus(s(z), s(z), s(s(s(z)))) <= plus(s(z), z, s(s(z))) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ _r_1(x_1_0) /\ _r_1(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ is_even(x_1_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_1_0) /\ is_even(x_0_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) /\ is_even(x_0_0) /\ is_even(x_1_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_fm)) <= plus(n, mm, _fm) : Yes: { _fm -> s(z) ; mm -> z ; n -> s(s(z)) } is_even(_km) <= plus(x, x, _km) : No: () Total time: 0.325554 Learner time: 0.267083 Teacher time: 0.012756 Reasons for stopping: Yes: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ _r_1(x_1_0) /\ _r_1(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0) /\ is_even(x_1_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_1_0) /\ is_even(x_0_0) /\ is_even(x_2_0) plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_2_0) /\ is_even(x_0_0) /\ is_even(x_1_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) /\ _r_1(x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_0_0) /\ is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _|