Solving ../../benchmarks/smtlib/true/isaplanner_prop18.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: Some(60.) (sec) Teacher_type: Checks all clauses every time Approximation method: remove every clause that can be safely removed Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: { plus(n, z, n) <= True plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) } eq_nat(_yqa, _zqa) <= plus(_wqa, _xqa, _yqa) /\ plus(_wqa, _xqa, _zqa) ) (le, P: { le(z, s(nn2)) <= True le(s(nn1), s(nn2)) <= le(nn1, nn2) le(nn1, nn2) <= le(s(nn1), s(nn2)) False <= le(s(nn1), z) False <= le(z, z) } ) } properties: { le(i, s(_ara)) <= plus(i, m, _ara) } over-approximation: {plus} under-approximation: {le} Clause system for inference is: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Solving took 0.127774 seconds. Yes: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= le(x_0_0, x_1_0) le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0), s(x_1_0)) <= _r_1(x_0_0, x_1_0) _r_1(z, s(x_1_0)) <= True _r_1(z, z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0, x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0, x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.006596 s (model generation: 0.006543, model checking: 0.000053): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { } Current best model: |_ name: None le -> [ le : { } ] ; plus -> [ plus : { } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : Yes: { n -> z } le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : No: () False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : No: () plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : No: () ------------------------------------------- Step 1, which took 0.007635 s (model generation: 0.007558, model checking: 0.000077): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { plus(z, z, z) <= True } Current best model: |_ name: None le -> [ le : { } ] ; plus -> [ plus : { plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : Yes: { n -> s(_njse_0) } le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : No: () False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : Yes: { _ara -> z ; i -> z ; m -> z } plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : Yes: { _vqa -> z ; mm -> z ; n -> z } ------------------------------------------- Step 2, which took 0.008024 s (model generation: 0.007910, model checking: 0.000114): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(z, s(z)) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True } Current best model: |_ name: None le -> [ le : { le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () le(s(nn1), s(nn2)) <= le(nn1, nn2) : Yes: { nn1 -> z ; nn2 -> s(_vjse_0) } le(nn1, nn2) <= le(s(nn1), s(nn2)) : No: () False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : Yes: { _ara -> s(_wjse_0) ; i -> s(_xjse_0) ; m -> z } plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : Yes: { _vqa -> s(_zjse_0) ; mm -> z ; n -> s(_bkse_0) } ------------------------------------------- Step 3, which took 0.008351 s (model generation: 0.008290, model checking: 0.000061): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(s(z), s(s(z))) <= True le(z, s(z)) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True } Current best model: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= True le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : Yes: { nn1 -> z ; nn2 -> z } False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : No: () plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : No: () ------------------------------------------- Step 4, which took 0.008850 s (model generation: 0.008776, model checking: 0.000074): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(s(z), s(s(z))) <= True le(z, s(z)) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True le(z, z) <= le(s(z), s(z)) } Current best model: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= True le(z, s(x_1_0)) <= True le(z, z) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : Yes: { nn1 -> s(_gkse_0) ; nn2 -> z } False <= le(s(nn1), z) : No: () False <= le(z, z) : Yes: { } le(i, s(_ara)) <= plus(i, m, _ara) : No: () plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : No: () ------------------------------------------- Step 5, which took 0.008618 s (model generation: 0.008490, model checking: 0.000128): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(s(z), s(s(z))) <= True le(z, s(z)) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True le(s(z), z) <= le(s(s(z)), s(z)) False <= le(s(z), s(z)) False <= le(z, z) } Current best model: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= le(x_0_0, x_1_0) le(s(x_0_0), z) <= True le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : No: () False <= le(s(nn1), z) : Yes: { } False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : Yes: { _ara -> s(z) ; i -> s(s(z)) ; m -> z } plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : No: () ------------------------------------------- Step 6, which took 0.014255 s (model generation: 0.014131, model checking: 0.000124): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(s(z), s(s(z))) <= True le(z, s(z)) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= le(s(s(z)), s(z)) False <= le(s(z), s(z)) False <= le(s(z), z) False <= le(z, z) le(s(s(z)), s(s(z))) <= plus(s(s(z)), z, s(z)) } Current best model: |_ name: None le -> [ le : { _r_1(s(x_0_0)) <= True le(s(x_0_0), s(x_1_0)) <= _r_1(x_1_0) le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : Yes: { nn1 -> s(_hlse_0) ; nn2 -> s(z) } False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : No: () plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : No: () ------------------------------------------- Step 7, which took 0.012483 s (model generation: 0.012310, model checking: 0.000173): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(s(z), s(s(z))) <= True le(z, s(z)) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= le(s(s(z)), s(s(z))) False <= le(s(s(z)), s(z)) False <= le(s(z), s(z)) False <= le(s(z), z) False <= le(z, z) False <= plus(s(s(z)), z, s(z)) } Current best model: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= le(x_0_0, x_1_0) le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { _r_1(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : Yes: { n -> s(s(_lmse_0)) } le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : No: () False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : Yes: { _ara -> s(z) ; i -> s(s(z)) ; m -> s(_hmse_0) } plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : No: () ------------------------------------------- Step 8, which took 0.014020 s (model generation: 0.013852, model checking: 0.000168): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(s(z), s(s(z))) <= True le(z, s(z)) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= le(s(s(z)), s(s(z))) False <= le(s(s(z)), s(z)) False <= le(s(z), s(z)) False <= le(s(z), z) False <= le(z, z) False <= plus(s(s(z)), s(z), s(z)) False <= plus(s(s(z)), z, s(z)) } Current best model: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= le(x_0_0, x_1_0) le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0), s(x_1_0)) <= True _r_1(z, z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0, x_1_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0, x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : No: () False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : Yes: { _ara -> s(z) ; i -> s(s(z)) ; m -> s(s(_vnse_0)) } plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : Yes: { _vqa -> s(_knse_0) ; mm -> s(z) ; n -> s(z) } ------------------------------------------- Step 9, which took 0.016877 s (model generation: 0.016607, model checking: 0.000270): Clauses: { plus(n, z, n) <= True -> 0 le(s(nn1), s(nn2)) <= le(nn1, nn2) -> 0 le(nn1, nn2) <= le(s(nn1), s(nn2)) -> 0 False <= le(s(nn1), z) -> 0 False <= le(z, z) -> 0 le(i, s(_ara)) <= plus(i, m, _ara) -> 0 plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) -> 0 } Accumulated learning constraints: { le(s(z), s(s(z))) <= True le(z, s(z)) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= le(s(s(z)), s(s(z))) False <= le(s(s(z)), s(z)) False <= le(s(z), s(z)) False <= le(s(z), z) False <= le(z, z) False <= plus(s(s(z)), s(s(z)), s(z)) False <= plus(s(s(z)), s(z), s(z)) False <= plus(s(s(z)), z, s(z)) plus(s(z), s(s(z)), s(s(z))) <= plus(s(z), s(z), s(z)) } Current best model: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= le(x_0_0, x_1_0) le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0), s(x_1_0)) <= True _r_1(z, s(x_1_0)) <= True _r_1(z, z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0, x_1_0) /\ _r_1(x_0_0, x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0, x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: plus(n, z, n) <= True : No: () le(s(nn1), s(nn2)) <= le(nn1, nn2) : No: () le(nn1, nn2) <= le(s(nn1), s(nn2)) : No: () False <= le(s(nn1), z) : No: () False <= le(z, z) : No: () le(i, s(_ara)) <= plus(i, m, _ara) : Yes: { _ara -> s(s(z)) ; i -> s(s(s(z))) ; m -> z } plus(n, s(mm), s(_vqa)) <= plus(n, mm, _vqa) : Yes: { _vqa -> s(s(_jpse_0)) ; mm -> z ; n -> s(s(_ipse_0)) } Total time: 0.127774 Learner time: 0.104467 Teacher time: 0.001242 Reasons for stopping: Yes: |_ name: None le -> [ le : { le(s(x_0_0), s(x_1_0)) <= le(x_0_0, x_1_0) le(z, s(x_1_0)) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0), s(x_1_0)) <= _r_1(x_0_0, x_1_0) _r_1(z, s(x_1_0)) <= True _r_1(z, z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= _r_1(x_0_0, x_2_0) plus(s(x_0_0), z, s(x_2_0)) <= _r_1(x_0_0, x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _|