Solving ../../benchmarks/smtlib/false/tree_depth_subtree_error.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: Some(60.) (sec) Teacher_type: Checks all clauses every time Approximation method: remove every clause that can be safely removed Learning problem is: env: { elt -> {a, b} ; etree -> {leaf, node} ; nat -> {s, z} } definition: { (leq_nat, P: { leq_nat(z, n2) <= True leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) False <= leq_nat(s(nn1), z) } ) (le_nat, P: { le_nat(z, s(nn2)) <= True le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) False <= le_nat(s(nn1), z) False <= le_nat(z, z) } ) (subtree, P: { subtree(leaf, t) <= True subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) False <= subtree(node(ea, ta1, ta2), leaf) eq_elt(ea, eb) <= subtree(node(ea, ta1, ta2), node(eb, tb1, tb2)) subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) } ) (max, F: { le_nat(n, m) \/ max(n, m, n) <= True max(n, m, m) <= le_nat(n, m) } eq_nat(_ggb, _hgb) <= max(_egb, _fgb, _ggb) /\ max(_egb, _fgb, _hgb) ) (height, F: { height(leaf, z) <= True height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) } eq_nat(_ngb, _ogb) <= height(_mgb, _ngb) /\ height(_mgb, _ogb) ) } properties: { le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) } over-approximation: {height, leq_nat, max, subtree} under-approximation: {leq_nat, max} Clause system for inference is: { height(leaf, z) <= True -> 0 le_nat(z, s(nn2)) <= True -> 0 subtree(leaf, t) <= True -> 0 height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) -> 0 height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) -> 0 le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) -> 0 subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 } Solving took 0.044516 seconds. No: Contradictory set of ground constraints: { False <= True height(leaf, z) <= True height(node(a, leaf, leaf), s(z)) <= True le_nat(s(z), s(s(z))) <= True le_nat(z, s(z)) <= True subtree(leaf, leaf) <= True subtree(leaf, node(a, leaf, leaf)) <= True subtree(node(a, leaf, leaf), node(a, node(a, leaf, leaf), node(a, leaf, leaf))) <= True False <= le_nat(s(s(z)), s(z)) False <= le_nat(s(z), s(z)) False <= le_nat(s(z), z) False <= le_nat(z, z) subtree(node(a, leaf, leaf), leaf) <= subtree(node(a, leaf, leaf), node(a, leaf, leaf)) /\ subtree(node(a, node(a, leaf, leaf), node(a, leaf, leaf)), node(a, node(a, leaf, leaf), leaf)) subtree(node(a, leaf, leaf), leaf) <= subtree(node(a, node(a, leaf, leaf), leaf), node(a, leaf, leaf)) } ------------------- STEPS: ------------------------------------------- Step 0, which took 0.005907 s (model generation: 0.005802, model checking: 0.000105): Clauses: { height(leaf, z) <= True -> 0 le_nat(z, s(nn2)) <= True -> 0 subtree(leaf, t) <= True -> 0 height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) -> 0 height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) -> 0 le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) -> 0 subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 } Accumulated learning constraints: { } Current best model: |_ name: None height -> [ height : { } ] ; le_nat -> [ le_nat : { } ] ; leq_nat -> [ leq_nat : { } ] ; subtree -> [ subtree : { } ] -- Equality automata are defined for: {elt, etree, nat} _| Answer of teacher: height(leaf, z) <= True : Yes: { } le_nat(z, s(nn2)) <= True : Yes: { } subtree(leaf, t) <= True : Yes: { t -> node(_vmtqw_0, _vmtqw_1, _vmtqw_2) } height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) : No: () height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) : No: () le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) : No: () le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) : No: () le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) : No: () False <= le_nat(s(nn1), z) : No: () False <= le_nat(z, z) : No: () leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) : No: () leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) : No: () subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) : No: () subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : No: () subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : No: () ------------------------------------------- Step 1, which took 0.006957 s (model generation: 0.006832, model checking: 0.000125): Clauses: { height(leaf, z) <= True -> 0 le_nat(z, s(nn2)) <= True -> 0 subtree(leaf, t) <= True -> 0 height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) -> 0 height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) -> 0 le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) -> 0 subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 } Accumulated learning constraints: { height(leaf, z) <= True le_nat(z, s(z)) <= True subtree(leaf, node(a, leaf, leaf)) <= True } Current best model: |_ name: None height -> [ height : { height(leaf, z) <= True } ] ; le_nat -> [ le_nat : { le_nat(z, s(x_1_0)) <= True } ] ; leq_nat -> [ leq_nat : { } ] ; subtree -> [ subtree : { subtree(leaf, node(x_1_0, x_1_1, x_1_2)) <= True } ] -- Equality automata are defined for: {elt, etree, nat} _| Answer of teacher: height(leaf, z) <= True : No: () le_nat(z, s(nn2)) <= True : No: () subtree(leaf, t) <= True : Yes: { t -> leaf } height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) : Yes: { _igb -> z ; _jgb -> z ; _lgb -> z ; t1 -> leaf ; t2 -> leaf } height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) : No: () le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) : No: () le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) : Yes: { nn1 -> z ; nn2 -> s(_dntqw_0) } le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) : No: () False <= le_nat(s(nn1), z) : No: () False <= le_nat(z, z) : No: () leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) : No: () leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) : No: () subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) : Yes: { ta1 -> leaf ; ta2 -> leaf ; tb1 -> node(_gntqw_0, _gntqw_1, _gntqw_2) ; tb2 -> node(_hntqw_0, _hntqw_1, _hntqw_2) } subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : No: () subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : No: () ------------------------------------------- Step 2, which took 0.009568 s (model generation: 0.009364, model checking: 0.000204): Clauses: { height(leaf, z) <= True -> 0 le_nat(z, s(nn2)) <= True -> 0 subtree(leaf, t) <= True -> 0 height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) -> 0 height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) -> 0 le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) -> 0 subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 } Accumulated learning constraints: { height(leaf, z) <= True height(node(a, leaf, leaf), s(z)) \/ le_nat(z, z) <= True le_nat(s(z), s(s(z))) <= True le_nat(z, s(z)) <= True subtree(leaf, leaf) <= True subtree(leaf, node(a, leaf, leaf)) <= True subtree(node(a, leaf, leaf), node(a, node(a, leaf, leaf), node(a, leaf, leaf))) <= True } Current best model: |_ name: None height -> [ height : { height(leaf, z) <= True height(node(x_0_0, x_0_1, x_0_2), s(x_1_0)) <= True } ] ; le_nat -> [ le_nat : { le_nat(s(x_0_0), s(x_1_0)) <= True le_nat(z, s(x_1_0)) <= True le_nat(z, z) <= True } ] ; leq_nat -> [ leq_nat : { } ] ; subtree -> [ subtree : { subtree(leaf, leaf) <= True subtree(leaf, node(x_1_0, x_1_1, x_1_2)) <= True subtree(node(x_0_0, x_0_1, x_0_2), node(x_1_0, x_1_1, x_1_2)) <= True } ] -- Equality automata are defined for: {elt, etree, nat} _| Answer of teacher: height(leaf, z) <= True : No: () le_nat(z, s(nn2)) <= True : No: () subtree(leaf, t) <= True : No: () height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) : No: () height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) : No: () le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) : No: () le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) : No: () le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) : Yes: { nn1 -> s(_intqw_0) ; nn2 -> z } False <= le_nat(s(nn1), z) : No: () False <= le_nat(z, z) : Yes: { } leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) : No: () leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) : No: () subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) : No: () subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : Yes: { ta1 -> node(_sntqw_0, _sntqw_1, _sntqw_2) ; ta2 -> node(_tntqw_0, _tntqw_1, _tntqw_2) ; tb1 -> node(_untqw_0, _untqw_1, _untqw_2) ; tb2 -> leaf } subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : Yes: { ta1 -> node(_wntqw_0, _wntqw_1, _wntqw_2) ; tb1 -> leaf } ------------------------------------------- Step 3, which took 0.011474 s (model generation: 0.011333, model checking: 0.000141): Clauses: { height(leaf, z) <= True -> 0 le_nat(z, s(nn2)) <= True -> 0 subtree(leaf, t) <= True -> 0 height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) -> 0 height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) -> 0 le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) -> 0 subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) -> 0 } Accumulated learning constraints: { height(leaf, z) <= True height(node(a, leaf, leaf), s(z)) <= True le_nat(s(z), s(s(z))) <= True le_nat(z, s(z)) <= True subtree(leaf, leaf) <= True subtree(leaf, node(a, leaf, leaf)) <= True subtree(node(a, leaf, leaf), node(a, node(a, leaf, leaf), node(a, leaf, leaf))) <= True le_nat(s(z), z) <= le_nat(s(s(z)), s(z)) False <= le_nat(z, z) subtree(node(a, leaf, leaf), leaf) <= subtree(node(a, leaf, leaf), node(a, leaf, leaf)) /\ subtree(node(a, node(a, leaf, leaf), node(a, leaf, leaf)), node(a, node(a, leaf, leaf), leaf)) subtree(node(a, leaf, leaf), leaf) <= subtree(node(a, node(a, leaf, leaf), leaf), node(a, leaf, leaf)) } Current best model: |_ name: None height -> [ height : { height(leaf, z) <= True height(node(x_0_0, x_0_1, x_0_2), s(x_1_0)) <= True } ] ; le_nat -> [ le_nat : { le_nat(s(x_0_0), s(x_1_0)) <= True le_nat(s(x_0_0), z) <= True le_nat(z, s(x_1_0)) <= True } ] ; leq_nat -> [ leq_nat : { } ] ; subtree -> [ subtree : { subtree(leaf, leaf) <= True subtree(leaf, node(x_1_0, x_1_1, x_1_2)) <= True subtree(node(x_0_0, x_0_1, x_0_2), leaf) <= True subtree(node(x_0_0, x_0_1, x_0_2), node(x_1_0, x_1_1, x_1_2)) <= True } ] -- Equality automata are defined for: {elt, etree, nat} _| Answer of teacher: height(leaf, z) <= True : No: () le_nat(z, s(nn2)) <= True : No: () subtree(leaf, t) <= True : No: () height(node(e, t1, t2), s(_lgb)) \/ le_nat(_igb, _jgb) <= height(t1, _igb) /\ height(t1, _lgb) /\ height(t2, _jgb) : No: () height(node(e, t1, t2), s(_kgb)) <= height(t1, _igb) /\ height(t2, _jgb) /\ height(t2, _kgb) /\ le_nat(_igb, _jgb) : No: () le_nat(_pgb, _qgb) <= height(t1, _pgb) /\ height(t2, _qgb) /\ subtree(t1, t2) : Yes: { _pgb -> z ; _qgb -> z ; t1 -> leaf ; t2 -> leaf } le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) : No: () le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) : Yes: { nn1 -> z ; nn2 -> z } False <= le_nat(s(nn1), z) : Yes: { } False <= le_nat(z, z) : No: () leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) : No: () leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) : No: () subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) <= subtree(ta1, tb1) /\ subtree(ta2, tb2) : No: () subtree(ta2, tb2) <= subtree(ta1, tb1) /\ subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : No: () subtree(ta1, tb1) <= subtree(node(eb, ta1, ta2), node(eb, tb1, tb2)) : No: () Total time: 0.044516 Learner time: 0.033331 Teacher time: 0.000575 Reasons for stopping: No: Contradictory set of ground constraints: { False <= True height(leaf, z) <= True height(node(a, leaf, leaf), s(z)) <= True le_nat(s(z), s(s(z))) <= True le_nat(z, s(z)) <= True subtree(leaf, leaf) <= True subtree(leaf, node(a, leaf, leaf)) <= True subtree(node(a, leaf, leaf), node(a, node(a, leaf, leaf), node(a, leaf, leaf))) <= True False <= le_nat(s(s(z)), s(z)) False <= le_nat(s(z), s(z)) False <= le_nat(s(z), z) False <= le_nat(z, z) subtree(node(a, leaf, leaf), leaf) <= subtree(node(a, leaf, leaf), node(a, leaf, leaf)) /\ subtree(node(a, node(a, leaf, leaf), node(a, leaf, leaf)), node(a, node(a, leaf, leaf), leaf)) subtree(node(a, leaf, leaf), leaf) <= subtree(node(a, node(a, leaf, leaf), leaf), node(a, leaf, leaf)) }