Solving ../../benchmarks/smtlib/false/tree_depth_le_error.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: Some(60.) (sec) Teacher_type: Checks all clauses every time Approximation method: remove every clause that can be safely removed Learning problem is: env: { elt -> {a, b} ; etree -> {leaf, node} ; nat -> {s, z} } definition: { (leq_nat, P: { leq_nat(z, n2) <= True leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) False <= leq_nat(s(nn1), z) } ) (le_nat, P: { le_nat(z, s(nn2)) <= True le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) False <= le_nat(s(nn1), z) False <= le_nat(z, z) } ) (max, F: { leq_nat(n, m) \/ max(n, m, n) <= True max(n, m, m) <= leq_nat(n, m) } eq_nat(_seb, _teb) <= max(_qeb, _reb, _seb) /\ max(_qeb, _reb, _teb) ) (plus, F: { plus(n, z, n) <= True plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) } eq_nat(_xeb, _yeb) <= plus(_veb, _web, _xeb) /\ plus(_veb, _web, _yeb) ) (height, F: { height(leaf, z) <= True height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) } eq_nat(_dfb, _efb) <= height(_cfb, _dfb) /\ height(_cfb, _efb) ) (numnodes, F: { numnodes(leaf, z) <= True numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) } eq_nat(_jfb, _kfb) <= numnodes(_ifb, _jfb) /\ numnodes(_ifb, _kfb) ) } properties: { le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) } over-approximation: {height, max, numnodes, plus} under-approximation: {le_nat} Clause system for inference is: { height(leaf, z) <= True -> 0 leq_nat(n, m) \/ max(n, m, n) <= True -> 0 leq_nat(z, n2) <= True -> 0 numnodes(leaf, z) <= True -> 0 plus(n, z, n) <= True -> 0 le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) -> 0 height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 max(n, m, m) <= leq_nat(n, m) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 False <= leq_nat(s(nn1), z) -> 0 numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) -> 0 plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) -> 0 } Solving took 0.112034 seconds. No: Contradictory set of ground constraints: { height(leaf, z) <= True height(node(a, leaf, leaf), s(z)) <= True le_nat(z, z) <= True leq_nat(s(z), s(z)) <= True leq_nat(z, s(z)) <= True leq_nat(z, z) <= True max(s(z), z, s(z)) <= True max(z, z, z) <= True numnodes(leaf, z) <= True numnodes(node(a, leaf, leaf), s(z)) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= le_nat(z, z) False <= leq_nat(s(z), z) } ------------------- STEPS: ------------------------------------------- Step 0, which took 0.006357 s (model generation: 0.006178, model checking: 0.000179): Clauses: { height(leaf, z) <= True -> 0 leq_nat(n, m) \/ max(n, m, n) <= True -> 0 leq_nat(z, n2) <= True -> 0 numnodes(leaf, z) <= True -> 0 plus(n, z, n) <= True -> 0 le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) -> 0 height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 max(n, m, m) <= leq_nat(n, m) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 False <= leq_nat(s(nn1), z) -> 0 numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) -> 0 plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) -> 0 } Accumulated learning constraints: { } Current best model: |_ name: None height -> [ height : { } ] ; le_nat -> [ le_nat : { } ] ; leq_nat -> [ leq_nat : { } ] ; max -> [ max : { } ] ; numnodes -> [ numnodes : { } ] ; plus -> [ plus : { } ] -- Equality automata are defined for: {elt, etree, nat} _| Answer of teacher: height(leaf, z) <= True : Yes: { } leq_nat(n, m) \/ max(n, m, n) <= True : Yes: { m -> z ; n -> z } leq_nat(z, n2) <= True : Yes: { n2 -> z } numnodes(leaf, z) <= True : Yes: { } plus(n, z, n) <= True : Yes: { n -> z } le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) : No: () height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) : No: () le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) : No: () le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) : No: () False <= le_nat(s(nn1), z) : No: () False <= le_nat(z, z) : No: () max(n, m, m) <= leq_nat(n, m) : No: () leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) : No: () leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) : No: () False <= leq_nat(s(nn1), z) : No: () numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) : No: () plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) : No: () ------------------------------------------- Step 1, which took 0.006417 s (model generation: 0.006239, model checking: 0.000178): Clauses: { height(leaf, z) <= True -> 0 leq_nat(n, m) \/ max(n, m, n) <= True -> 0 leq_nat(z, n2) <= True -> 0 numnodes(leaf, z) <= True -> 0 plus(n, z, n) <= True -> 0 le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) -> 0 height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 max(n, m, m) <= leq_nat(n, m) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 False <= leq_nat(s(nn1), z) -> 0 numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) -> 0 plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) -> 0 } Accumulated learning constraints: { height(leaf, z) <= True leq_nat(z, z) <= True numnodes(leaf, z) <= True plus(z, z, z) <= True } Current best model: |_ name: None height -> [ height : { height(leaf, z) <= True } ] ; le_nat -> [ le_nat : { } ] ; leq_nat -> [ leq_nat : { leq_nat(z, z) <= True } ] ; max -> [ max : { } ] ; numnodes -> [ numnodes : { numnodes(leaf, z) <= True } ] ; plus -> [ plus : { plus(z, z, z) <= True } ] -- Equality automata are defined for: {elt, etree, nat} _| Answer of teacher: height(leaf, z) <= True : No: () leq_nat(n, m) \/ max(n, m, n) <= True : Yes: { m -> z ; n -> s(_sjtqw_0) } leq_nat(z, n2) <= True : Yes: { n2 -> s(_vjtqw_0) } numnodes(leaf, z) <= True : No: () plus(n, z, n) <= True : Yes: { n -> s(_wjtqw_0) } le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) : Yes: { _lfb -> z ; _mfb -> z ; t1 -> leaf } height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) : No: () le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) : No: () le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) : No: () False <= le_nat(s(nn1), z) : No: () False <= le_nat(z, z) : No: () max(n, m, m) <= leq_nat(n, m) : Yes: { m -> z ; n -> z } leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) : Yes: { nn1 -> z ; nn2 -> z } leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) : No: () False <= leq_nat(s(nn1), z) : No: () numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) : Yes: { _ffb -> z ; _gfb -> z ; _hfb -> z ; t1 -> leaf ; t2 -> leaf } plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) : Yes: { _ueb -> z ; mm -> z ; n -> z } ------------------------------------------- Step 2, which took 0.009299 s (model generation: 0.009165, model checking: 0.000134): Clauses: { height(leaf, z) <= True -> 0 leq_nat(n, m) \/ max(n, m, n) <= True -> 0 leq_nat(z, n2) <= True -> 0 numnodes(leaf, z) <= True -> 0 plus(n, z, n) <= True -> 0 le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) -> 0 height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) -> 0 le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) -> 0 le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) -> 0 False <= le_nat(s(nn1), z) -> 0 False <= le_nat(z, z) -> 0 max(n, m, m) <= leq_nat(n, m) -> 0 leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) -> 0 leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) -> 0 False <= leq_nat(s(nn1), z) -> 0 numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) -> 0 plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) -> 0 } Accumulated learning constraints: { height(leaf, z) <= True le_nat(z, z) <= True leq_nat(s(z), s(z)) <= True leq_nat(s(z), z) \/ max(s(z), z, s(z)) <= True leq_nat(z, s(z)) <= True leq_nat(z, z) <= True max(z, z, z) <= True numnodes(leaf, z) <= True numnodes(node(a, leaf, leaf), s(z)) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True } Current best model: |_ name: None height -> [ height : { height(leaf, z) <= True } ] ; le_nat -> [ le_nat : { le_nat(z, z) <= True } ] ; leq_nat -> [ leq_nat : { leq_nat(s(x_0_0), s(x_1_0)) <= True leq_nat(s(x_0_0), z) <= True leq_nat(z, s(x_1_0)) <= True leq_nat(z, z) <= True } ] ; max -> [ max : { max(s(x_0_0), z, s(x_2_0)) <= True max(z, z, z) <= True } ] ; numnodes -> [ numnodes : { numnodes(leaf, z) <= True numnodes(node(x_0_0, x_0_1, x_0_2), s(x_1_0)) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {elt, etree, nat} _| Answer of teacher: height(leaf, z) <= True : No: () leq_nat(n, m) \/ max(n, m, n) <= True : No: () leq_nat(z, n2) <= True : No: () numnodes(leaf, z) <= True : No: () plus(n, z, n) <= True : No: () le_nat(_lfb, _mfb) <= height(t1, _lfb) /\ numnodes(t1, _mfb) : No: () height(node(e, t1, t2), s(_bfb)) <= height(t1, _zeb) /\ height(t2, _afb) /\ max(_zeb, _afb, _bfb) : Yes: { _afb -> z ; _bfb -> z ; _zeb -> z ; t1 -> leaf ; t2 -> leaf } le_nat(s(nn1), s(nn2)) <= le_nat(nn1, nn2) : Yes: { nn1 -> z ; nn2 -> z } le_nat(nn1, nn2) <= le_nat(s(nn1), s(nn2)) : No: () False <= le_nat(s(nn1), z) : No: () False <= le_nat(z, z) : Yes: { } max(n, m, m) <= leq_nat(n, m) : Yes: { m -> z ; n -> s(_wktqw_0) } leq_nat(s(nn1), s(nn2)) <= leq_nat(nn1, nn2) : No: () leq_nat(nn1, nn2) <= leq_nat(s(nn1), s(nn2)) : No: () False <= leq_nat(s(nn1), z) : Yes: { } numnodes(node(e, t1, t2), s(_hfb)) <= numnodes(t1, _ffb) /\ numnodes(t2, _gfb) /\ plus(_ffb, _gfb, _hfb) : No: () plus(n, s(mm), s(_ueb)) <= plus(n, mm, _ueb) : Yes: { _ueb -> s(_zktqw_0) ; mm -> z ; n -> s(_bltqw_0) } Total time: 0.112034 Learner time: 0.021582 Teacher time: 0.000491 Reasons for stopping: No: Contradictory set of ground constraints: { height(leaf, z) <= True height(node(a, leaf, leaf), s(z)) <= True le_nat(z, z) <= True leq_nat(s(z), s(z)) <= True leq_nat(z, s(z)) <= True leq_nat(z, z) <= True max(s(z), z, s(z)) <= True max(z, z, z) <= True numnodes(leaf, z) <= True numnodes(node(a, leaf, leaf), s(z)) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= le_nat(z, z) False <= leq_nat(s(z), z) }