Solving ../../benchmarks/smtlib/false/plus_even_implies.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: Some(60.) (sec) Teacher_type: Checks all clauses every time Approximation method: remove every clause that can be safely removed Learning problem is: env: { nat -> {s, z} } definition: { (is_even, P: { is_even(z) <= True is_even(s(s(n3))) <= is_even(n3) is_even(n3) <= is_even(s(s(n3))) False <= is_even(s(z)) } ) (plus, F: { plus(n, z, n) <= True plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) } eq_nat(_zza, _aab) <= plus(_xza, _yza, _aab) /\ plus(_xza, _yza, _zza) ) } properties: { is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) } over-approximation: {plus} under-approximation: {} Clause system for inference is: { is_even(z) <= True -> 0 plus(n, z, n) <= True -> 0 is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) -> 0 } Solving took 0.051078 seconds. No: Contradictory set of ground constraints: { False <= True is_even(s(s(z))) <= True is_even(z) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(z), z, s(s(z))) } ------------------- STEPS: ------------------------------------------- Step 0, which took 0.006158 s (model generation: 0.006096, model checking: 0.000062): Clauses: { is_even(z) <= True -> 0 plus(n, z, n) <= True -> 0 is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) -> 0 } Accumulated learning constraints: { } Current best model: |_ name: None is_even -> [ is_even : { } ] ; plus -> [ plus : { } ] -- Equality automata are defined for: {nat} _| Answer of teacher: is_even(z) <= True : Yes: { } plus(n, z, n) <= True : Yes: { n -> z } is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) : No: () ------------------------------------------- Step 1, which took 0.006376 s (model generation: 0.006312, model checking: 0.000064): Clauses: { is_even(z) <= True -> 0 plus(n, z, n) <= True -> 0 is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) -> 0 } Accumulated learning constraints: { is_even(z) <= True plus(z, z, z) <= True } Current best model: |_ name: None is_even -> [ is_even : { is_even(z) <= True } ] ; plus -> [ plus : { plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: is_even(z) <= True : No: () plus(n, z, n) <= True : Yes: { n -> s(_vdpqw_0) } is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) : No: () is_even(s(s(n3))) <= is_even(n3) : Yes: { n3 -> z } is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) : Yes: { _wza -> z ; mm -> z ; n -> z } ------------------------------------------- Step 2, which took 0.008171 s (model generation: 0.007752, model checking: 0.000419): Clauses: { is_even(z) <= True -> 0 plus(n, z, n) <= True -> 0 is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True } Current best model: |_ name: None is_even -> [ is_even : { is_even(s(x_0_0)) <= True is_even(z) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: is_even(z) <= True : No: () plus(n, z, n) <= True : No: () is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) : No: () is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : Yes: { } plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) : Yes: { _wza -> s(_aepqw_0) ; mm -> z ; n -> s(_cepqw_0) } ------------------------------------------- Step 3, which took 0.011508 s (model generation: 0.011395, model checking: 0.000113): Clauses: { is_even(z) <= True -> 0 plus(n, z, n) <= True -> 0 is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(z)) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= True is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= True plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: is_even(z) <= True : No: () plus(n, z, n) <= True : No: () is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) : Yes: { _bab -> s(s(_mepqw_0)) ; x -> s(z) ; y -> z } is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : Yes: { n3 -> s(z) } False <= is_even(s(z)) : No: () plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) : No: () ------------------------------------------- Step 4, which took 0.011569 s (model generation: 0.011314, model checking: 0.000255): Clauses: { is_even(z) <= True -> 0 plus(n, z, n) <= True -> 0 is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) -> 0 is_even(s(s(n3))) <= is_even(n3) -> 0 is_even(n3) <= is_even(s(s(n3))) -> 0 False <= is_even(s(z)) -> 0 plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) -> 0 } Accumulated learning constraints: { is_even(s(s(z))) <= True is_even(z) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(z), z, s(s(z))) } Current best model: |_ name: None is_even -> [ is_even : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True } ] ; plus -> [ plus : { _r_1(s(x_0_0)) <= is_even(x_0_0) is_even(s(x_0_0)) <= _r_1(x_0_0) is_even(z) <= True plus(s(x_0_0), s(x_1_0), s(x_2_0)) <= True plus(s(x_0_0), z, s(x_2_0)) <= is_even(x_2_0) plus(z, s(x_1_0), s(x_2_0)) <= True plus(z, z, z) <= True } ] -- Equality automata are defined for: {nat} _| Answer of teacher: is_even(z) <= True : No: () plus(n, z, n) <= True : Yes: { n -> s(s(z)) } is_even(x) <= is_even(_bab) /\ plus(x, y, _bab) : Yes: { _bab -> s(s(z)) ; x -> s(z) ; y -> s(_sepqw_0) } is_even(s(s(n3))) <= is_even(n3) : No: () is_even(n3) <= is_even(s(s(n3))) : No: () False <= is_even(s(z)) : No: () plus(n, s(mm), s(_wza)) <= plus(n, mm, _wza) : No: () Total time: 0.051078 Learner time: 0.042869 Teacher time: 0.000913 Reasons for stopping: No: Contradictory set of ground constraints: { False <= True is_even(s(s(z))) <= True is_even(z) <= True plus(s(s(z)), z, s(s(z))) <= True plus(s(z), s(z), s(s(z))) <= True plus(s(z), z, s(z)) <= True plus(z, s(z), s(z)) <= True plus(z, z, z) <= True False <= is_even(s(s(s(z)))) False <= is_even(s(z)) False <= plus(s(z), z, s(s(z))) }