Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: right Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)])} (plus([_mda, _nda, _oda]) /\ plus([_mda, _nda, _pda])) -> eq_nat([_oda, _pda]) ) (le, P: {() -> le([z, s(nn2)]) (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) (le([s(nn1), z])) -> BOT (le([z, z])) -> BOT} ) } properties: {(le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda])} over-approximation: {plus} under-approximation: {} Clause system for inference is: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 0 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 0 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 0 (le([s(nn1), z])) -> BOT -> 0 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 0 (le([z, z])) -> BOT -> 0 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 0 } Solving took 0.347716 seconds. Proved Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5833, q_gen_5834, q_gen_5839}, Q_f={q_gen_5820, q_gen_5823}, Delta= { (q_gen_5833) -> q_gen_5833 () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5839) -> q_gen_5839 (q_gen_5833) -> q_gen_5839 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5823) -> q_gen_5823 (q_gen_5839) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5839) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 (q_gen_5834) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.005666 s (model generation: 0.005275, model checking: 0.000391): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.011161 s (model generation: 0.011033, model checking: 0.000128): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 1 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 2, which took 0.011372 s (model generation: 0.011138, model checking: 0.000234): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822}, Q_f={q_gen_5821}, Delta= { () -> q_gen_5822 (q_gen_5822) -> q_gen_5821 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 4 } Sat witness: Found: ((plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]), { _lda -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 3, which took 0.011790 s (model generation: 0.011475, model checking: 0.000315): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822}, Q_f={q_gen_5821}, Delta= { () -> q_gen_5822 (q_gen_5822) -> q_gen_5821 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5824 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 2 (le([s(nn1), z])) -> BOT -> 2 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 2 (le([z, z])) -> BOT -> 2 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 4 } Sat witness: Found: ((le([nn1, nn2])) -> le([s(nn1), s(nn2)]), { nn1 -> z ; nn2 -> s(z) }) ------------------------------------------- Step 4, which took 0.014588 s (model generation: 0.011198, model checking: 0.003390): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822}, Q_f={q_gen_5821}, Delta= { () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5824 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 3 (le([s(nn1), z])) -> BOT -> 3 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 3 (le([z, z])) -> BOT -> 3 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 5, which took 0.012215 s (model generation: 0.011714, model checking: 0.000501): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822}, Q_f={q_gen_5821}, Delta= { () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824}, Q_f={q_gen_5820}, Delta= { (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5824) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 4 (le([z, z])) -> BOT -> 4 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 4 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> s(z) }) ------------------------------------------- Step 6, which took 0.012431 s (model generation: 0.012094, model checking: 0.000337): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824}, Q_f={q_gen_5820}, Delta= { (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5824) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 4 (le([z, z])) -> BOT -> 4 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 7 } Sat witness: Found: ((plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]), { _lda -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 7, which took 0.014572 s (model generation: 0.012823, model checking: 0.001749): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824, q_gen_5833}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5820) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5833) -> q_gen_5820 () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 7 (le([z, z])) -> BOT -> 5 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 7 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]), { _qda -> s(z) ; m -> s(z) ; n -> s(z) }) ------------------------------------------- Step 8, which took 0.013912 s (model generation: 0.013632, model checking: 0.000280): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 () -> q_gen_5821 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824, q_gen_5833}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5820) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5833) -> q_gen_5820 () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 5 (le([s(nn1), z])) -> BOT -> 5 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 7 (le([z, z])) -> BOT -> 8 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 7 } Sat witness: Found: ((le([z, z])) -> BOT, { }) ------------------------------------------- Step 9, which took 0.013809 s (model generation: 0.013640, model checking: 0.000169): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5836}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5836) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 () -> q_gen_5836 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824, q_gen_5833}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5820) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5833) -> q_gen_5820 () -> q_gen_5820 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 6 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 7 (le([z, z])) -> BOT -> 8 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 7 } Sat witness: Found: ((le([s(nn1), s(nn2)])) -> le([nn1, nn2]), { nn1 -> z ; nn2 -> z }) ------------------------------------------- Step 10, which took 0.015871 s (model generation: 0.013443, model checking: 0.002428): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824, q_gen_5832, q_gen_5833}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5832) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5820) -> q_gen_5832 (q_gen_5833) -> q_gen_5832 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 7 () -> plus([n, z, n]) -> 7 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 6 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 7 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 7 (le([z, z])) -> BOT -> 8 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 10 } Sat witness: Found: ((plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]), { _lda -> s(s(z)) ; mm -> s(z) ; n -> s(z) }) ------------------------------------------- Step 11, which took 0.015470 s (model generation: 0.015018, model checking: 0.000452): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5833, q_gen_5834}, Q_f={q_gen_5820, q_gen_5823}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 (q_gen_5833) -> q_gen_5824 () -> q_gen_5824 () -> q_gen_5820 (q_gen_5823) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 7 () -> plus([n, z, n]) -> 7 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 7 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 7 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 10 (le([z, z])) -> BOT -> 8 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 10 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]), { _qda -> s(s(z)) ; m -> s(z) ; n -> s(s(z)) }) ------------------------------------------- Step 12, which took 0.017731 s (model generation: 0.016653, model checking: 0.001078): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5833, q_gen_5834}, Q_f={q_gen_5820, q_gen_5823}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 (q_gen_5833) -> q_gen_5824 () -> q_gen_5824 (q_gen_5823) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5824) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 8 () -> plus([n, z, n]) -> 8 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 8 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 9 (le([s(nn1), z])) -> BOT -> 8 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 10 (le([z, z])) -> BOT -> 9 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 13 } Sat witness: Found: ((plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]), { _lda -> s(s(z)) ; mm -> z ; n -> s(s(z)) }) ------------------------------------------- Step 13, which took 0.020422 s (model generation: 0.019389, model checking: 0.001033): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5824, q_gen_5832, q_gen_5833, q_gen_5839}, Q_f={q_gen_5820}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5833) -> q_gen_5839 (q_gen_5832) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5820) -> q_gen_5832 (q_gen_5839) -> q_gen_5832 (q_gen_5839) -> q_gen_5832 (q_gen_5833) -> q_gen_5832 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 9 () -> plus([n, z, n]) -> 9 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 9 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 10 (le([s(nn1), z])) -> BOT -> 9 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 13 (le([z, z])) -> BOT -> 10 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 13 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]), { _qda -> s(s(z)) ; m -> s(s(z)) ; n -> s(s(z)) }) ------------------------------------------- Step 14, which took 0.023074 s (model generation: 0.022303, model checking: 0.000771): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835, q_gen_5836}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5835) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5836) -> q_gen_5835 () -> q_gen_5836 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5833, q_gen_5834}, Q_f={q_gen_5820, q_gen_5823}, Delta= { () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 (q_gen_5833) -> q_gen_5824 () -> q_gen_5824 (q_gen_5834) -> q_gen_5820 () -> q_gen_5820 (q_gen_5823) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 10 () -> plus([n, z, n]) -> 10 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 10 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 10 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 13 (le([z, z])) -> BOT -> 11 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 13 } Sat witness: Found: ((le([s(nn1), s(nn2)])) -> le([nn1, nn2]), { nn1 -> s(z) ; nn2 -> s(z) }) ------------------------------------------- Step 15, which took 0.021367 s (model generation: 0.020288, model checking: 0.001079): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5827, q_gen_5833, q_gen_5834}, Q_f={q_gen_5820, q_gen_5823}, Delta= { () -> q_gen_5833 () -> q_gen_5824 (q_gen_5824) -> q_gen_5827 (q_gen_5833) -> q_gen_5827 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5823) -> q_gen_5823 (q_gen_5827) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5827) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 (q_gen_5834) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 10 () -> plus([n, z, n]) -> 13 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 11 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 11 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 13 (le([z, z])) -> BOT -> 11 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 13 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(s(z))) }) ------------------------------------------- Step 16, which took 0.022880 s (model generation: 0.021882, model checking: 0.000998): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5827, q_gen_5833, q_gen_5834}, Q_f={q_gen_5820, q_gen_5823}, Delta= { () -> q_gen_5833 () -> q_gen_5824 (q_gen_5824) -> q_gen_5827 (q_gen_5827) -> q_gen_5827 (q_gen_5833) -> q_gen_5827 (q_gen_5823) -> q_gen_5820 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5827) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5827) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 (q_gen_5834) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 11 () -> plus([n, z, n]) -> 13 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 12 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 12 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 13 (le([z, z])) -> BOT -> 12 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 16 } Sat witness: Found: ((plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]), { _lda -> s(s(z)) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 17, which took 0.026336 s (model generation: 0.025643, model checking: 0.000693): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5827, q_gen_5833, q_gen_5834}, Q_f={q_gen_5820, q_gen_5823}, Delta= { (q_gen_5833) -> q_gen_5833 () -> q_gen_5833 (q_gen_5827) -> q_gen_5824 () -> q_gen_5824 (q_gen_5824) -> q_gen_5827 (q_gen_5833) -> q_gen_5827 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5823) -> q_gen_5823 (q_gen_5827) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5827) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 (q_gen_5834) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 12 () -> plus([n, z, n]) -> 13 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 13 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 13 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 16 (le([z, z])) -> BOT -> 13 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 16 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]), { _qda -> s(s(s(z))) ; m -> s(z) ; n -> s(s(s(z))) }) ------------------------------------------- Step 18, which took 0.030325 s (model generation: 0.028945, model checking: 0.001380): Model: |_ { le -> {{{ Q={q_gen_5821, q_gen_5822, q_gen_5835}, Q_f={q_gen_5821}, Delta= { (q_gen_5822) -> q_gen_5822 () -> q_gen_5822 (q_gen_5821) -> q_gen_5821 (q_gen_5822) -> q_gen_5821 (q_gen_5835) -> q_gen_5835 () -> q_gen_5835 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_5820, q_gen_5823, q_gen_5824, q_gen_5833, q_gen_5834, q_gen_5839}, Q_f={q_gen_5820, q_gen_5823}, Delta= { (q_gen_5833) -> q_gen_5833 () -> q_gen_5833 (q_gen_5824) -> q_gen_5824 () -> q_gen_5824 (q_gen_5833) -> q_gen_5839 (q_gen_5824) -> q_gen_5820 () -> q_gen_5820 (q_gen_5823) -> q_gen_5823 (q_gen_5839) -> q_gen_5823 (q_gen_5824) -> q_gen_5823 (q_gen_5839) -> q_gen_5823 (q_gen_5833) -> q_gen_5823 (q_gen_5820) -> q_gen_5834 (q_gen_5834) -> q_gen_5834 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 13 () -> plus([n, z, n]) -> 14 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 14 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 14 (le([s(nn1), z])) -> BOT -> 14 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _qda])) -> le([n, _qda]) -> 16 (le([z, z])) -> BOT -> 14 (plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]) -> 19 } Sat witness: Found: ((plus([n, mm, _lda])) -> plus([n, s(mm), s(_lda)]), { _lda -> s(s(z)) ; mm -> s(z) ; n -> z }) Total time: 0.347716 Reason for stopping: Proved