Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: right Learning problem is: env: { nat -> {s, z} } definition: { (double, F: {() -> double([z, z]) (double([nn, _rl])) -> double([s(nn), s(s(_rl))])} (double([_sl, _tl]) /\ double([_sl, _ul])) -> eq_nat([_tl, _ul]) ) (is_zero, P: {(double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT (double([n, z])) -> is_zero([n])} ) } properties: {() -> is_zero([z])} over-approximation: {double} under-approximation: {is_zero} Clause system for inference is: { () -> double([z, z]) -> 0 () -> is_zero([z]) -> 0 (double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT -> 0 (double([n, z])) -> is_zero([n]) -> 0 (double([nn, _rl])) -> double([s(nn), s(s(_rl))]) -> 0 } Solving took 0.067268 seconds. Proved Model: |_ { double -> {{{ Q={q_gen_2526, q_gen_2528, q_gen_2529}, Q_f={q_gen_2526}, Delta= { (q_gen_2529) -> q_gen_2529 () -> q_gen_2529 (q_gen_2526) -> q_gen_2526 (q_gen_2528) -> q_gen_2526 () -> q_gen_2526 (q_gen_2529) -> q_gen_2528 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_2525}, Q_f={q_gen_2525}, Delta= { () -> q_gen_2525 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.010004 s (model generation: 0.009823, model checking: 0.000181): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 0 () -> is_zero([z]) -> 3 (double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _rl])) -> double([s(nn), s(s(_rl))]) -> 1 } Sat witness: Found: (() -> is_zero([z]), { }) ------------------------------------------- Step 1, which took 0.010049 s (model generation: 0.009969, model checking: 0.000080): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_2525}, Q_f={q_gen_2525}, Delta= { () -> q_gen_2525 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _rl])) -> double([s(nn), s(s(_rl))]) -> 1 } Sat witness: Found: (() -> double([z, z]), { }) ------------------------------------------- Step 2, which took 0.010354 s (model generation: 0.010215, model checking: 0.000139): Model: |_ { double -> {{{ Q={q_gen_2526}, Q_f={q_gen_2526}, Delta= { () -> q_gen_2526 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_2525}, Q_f={q_gen_2525}, Delta= { () -> q_gen_2525 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _rl])) -> double([s(nn), s(s(_rl))]) -> 4 } Sat witness: Found: ((double([nn, _rl])) -> double([s(nn), s(s(_rl))]), { _rl -> z ; nn -> z }) ------------------------------------------- Step 3, which took 0.010788 s (model generation: 0.010631, model checking: 0.000157): Model: |_ { double -> {{{ Q={q_gen_2526, q_gen_2529}, Q_f={q_gen_2526}, Delta= { () -> q_gen_2529 (q_gen_2526) -> q_gen_2526 (q_gen_2529) -> q_gen_2526 () -> q_gen_2526 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_2525}, Q_f={q_gen_2525}, Delta= { () -> q_gen_2525 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT -> 4 (double([n, z])) -> is_zero([n]) -> 2 (double([nn, _rl])) -> double([s(nn), s(s(_rl))]) -> 4 } Sat witness: Found: ((double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT, { _vl -> s(z) ; n -> z }) ------------------------------------------- Step 4, which took 0.013540 s (model generation: 0.010662, model checking: 0.002878): Model: |_ { double -> {{{ Q={q_gen_2526, q_gen_2528, q_gen_2529}, Q_f={q_gen_2526}, Delta= { () -> q_gen_2529 (q_gen_2528) -> q_gen_2526 () -> q_gen_2526 (q_gen_2529) -> q_gen_2528 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_2525}, Q_f={q_gen_2525}, Delta= { () -> q_gen_2525 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 4 () -> is_zero([z]) -> 4 (double([n, _vl]) /\ is_zero([n]) /\ not eq_nat([_vl, z])) -> BOT -> 4 (double([n, z])) -> is_zero([n]) -> 3 (double([nn, _rl])) -> double([s(nn), s(s(_rl))]) -> 7 } Sat witness: Found: ((double([nn, _rl])) -> double([s(nn), s(s(_rl))]), { _rl -> s(s(z)) ; nn -> s(z) }) Total time: 0.067268 Reason for stopping: Proved