Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: right Learning problem is: env: { nat -> {s, z} } definition: { (double, F: {() -> double([z, z]) (double([nn, _dca])) -> double([s(nn), s(s(_dca))])} (double([_eca, _fca]) /\ double([_eca, _gca])) -> eq_nat([_fca, _gca]) ) (is_zero, P: {(double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) (double([n, z])) -> is_zero([n])} ) } properties: {() -> is_zero([z])} over-approximation: {double} under-approximation: {is_zero} Clause system for inference is: { () -> double([z, z]) -> 0 () -> is_zero([z]) -> 0 (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 0 (double([n, z])) -> is_zero([n]) -> 0 (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 0 } Solving took 0.065655 seconds. Proved Model: |_ { double -> {{{ Q={q_gen_5625, q_gen_5627, q_gen_5628}, Q_f={q_gen_5625}, Delta= { (q_gen_5628) -> q_gen_5628 () -> q_gen_5628 (q_gen_5625) -> q_gen_5625 (q_gen_5627) -> q_gen_5625 () -> q_gen_5625 (q_gen_5628) -> q_gen_5627 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_5624}, Q_f={q_gen_5624}, Delta= { () -> q_gen_5624 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.010115 s (model generation: 0.009836, model checking: 0.000279): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 0 () -> is_zero([z]) -> 3 (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 1 } Sat witness: Found: (() -> is_zero([z]), { }) ------------------------------------------- Step 1, which took 0.010179 s (model generation: 0.010099, model checking: 0.000080): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_5624}, Q_f={q_gen_5624}, Delta= { () -> q_gen_5624 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 1 } Sat witness: Found: (() -> double([z, z]), { }) ------------------------------------------- Step 2, which took 0.010305 s (model generation: 0.010168, model checking: 0.000137): Model: |_ { double -> {{{ Q={q_gen_5625}, Q_f={q_gen_5625}, Delta= { () -> q_gen_5625 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_5624}, Q_f={q_gen_5624}, Delta= { () -> q_gen_5624 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 4 } Sat witness: Found: ((double([nn, _dca])) -> double([s(nn), s(s(_dca))]), { _dca -> z ; nn -> z }) ------------------------------------------- Step 3, which took 0.010848 s (model generation: 0.010689, model checking: 0.000159): Model: |_ { double -> {{{ Q={q_gen_5625, q_gen_5628}, Q_f={q_gen_5625}, Delta= { () -> q_gen_5628 (q_gen_5625) -> q_gen_5625 (q_gen_5628) -> q_gen_5625 () -> q_gen_5625 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_5624}, Q_f={q_gen_5624}, Delta= { () -> q_gen_5624 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 4 (double([n, z])) -> is_zero([n]) -> 2 (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 4 } Sat witness: Found: ((double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]), { _hca -> s(z) ; n -> z }) ------------------------------------------- Step 4, which took 0.011309 s (model generation: 0.010845, model checking: 0.000464): Model: |_ { double -> {{{ Q={q_gen_5625, q_gen_5627, q_gen_5628}, Q_f={q_gen_5625}, Delta= { () -> q_gen_5628 (q_gen_5627) -> q_gen_5625 () -> q_gen_5625 (q_gen_5628) -> q_gen_5627 } Datatype: Convolution form: right }}} ; is_zero -> {{{ Q={q_gen_5624}, Q_f={q_gen_5624}, Delta= { () -> q_gen_5624 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 4 () -> is_zero([z]) -> 4 (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 4 (double([n, z])) -> is_zero([n]) -> 3 (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 7 } Sat witness: Found: ((double([nn, _dca])) -> double([s(nn), s(s(_dca))]), { _dca -> s(s(z)) ; nn -> s(z) }) Total time: 0.065655 Reason for stopping: Proved