Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: right Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)])} (plus([_b, _c, _d]) /\ plus([_b, _c, _e])) -> eq_nat([_d, _e]) ) (le, P: {() -> le([z, s(nn2)]) (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) (le([s(nn1), z])) -> BOT (le([z, z])) -> BOT} ) } properties: {(plus([m, i, _f])) -> le([i, s(_f)])} over-approximation: {plus} under-approximation: {le} Clause system for inference is: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 0 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 0 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 0 (le([s(nn1), z])) -> BOT -> 0 (le([z, z])) -> BOT -> 0 (plus([m, i, _f])) -> le([i, s(_f)]) -> 0 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 0 } Solving took 0.137023 seconds. Proved Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { (q_gen_2) -> q_gen_2 () -> q_gen_2 (q_gen_1) -> q_gen_1 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0, q_gen_13, q_gen_15}, Q_f={q_gen_0}, Delta= { (q_gen_13) -> q_gen_13 () -> q_gen_13 (q_gen_15) -> q_gen_15 (q_gen_13) -> q_gen_15 () -> q_gen_15 (q_gen_0) -> q_gen_0 (q_gen_15) -> q_gen_0 (q_gen_15) -> q_gen_0 (q_gen_13) -> q_gen_0 () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.010620 s (model generation: 0.010221, model checking: 0.000399): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _f])) -> le([i, s(_f)]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.017971 s (model generation: 0.010929, model checking: 0.007042): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0}, Q_f={q_gen_0}, Delta= { () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _f])) -> le([i, s(_f)]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 1 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 2, which took 0.011242 s (model generation: 0.011023, model checking: 0.000219): Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { () -> q_gen_2 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0}, Q_f={q_gen_0}, Delta= { () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _f])) -> le([i, s(_f)]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 3, which took 0.011748 s (model generation: 0.011533, model checking: 0.000215): Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { () -> q_gen_2 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0, q_gen_4}, Q_f={q_gen_0}, Delta= { () -> q_gen_4 (q_gen_4) -> q_gen_0 () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _f])) -> le([i, s(_f)]) -> 4 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: ((plus([m, i, _f])) -> le([i, s(_f)]), { _f -> s(z) ; i -> s(z) ; m -> z }) ------------------------------------------- Step 4, which took 0.012028 s (model generation: 0.011313, model checking: 0.000715): Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { () -> q_gen_2 (q_gen_1) -> q_gen_1 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0, q_gen_4}, Q_f={q_gen_0}, Delta= { () -> q_gen_4 (q_gen_4) -> q_gen_0 () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 2 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 2 (le([s(nn1), z])) -> BOT -> 2 (le([z, z])) -> BOT -> 2 (plus([m, i, _f])) -> le([i, s(_f)]) -> 4 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 5, which took 0.013972 s (model generation: 0.011599, model checking: 0.002373): Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { () -> q_gen_2 (q_gen_1) -> q_gen_1 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0, q_gen_4}, Q_f={q_gen_0}, Delta= { (q_gen_4) -> q_gen_4 () -> q_gen_4 (q_gen_4) -> q_gen_0 (q_gen_4) -> q_gen_0 () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 3 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 3 (le([s(nn1), z])) -> BOT -> 3 (le([z, z])) -> BOT -> 3 (plus([m, i, _f])) -> le([i, s(_f)]) -> 4 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> s(z) }) ------------------------------------------- Step 6, which took 0.012301 s (model generation: 0.011750, model checking: 0.000551): Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { (q_gen_2) -> q_gen_2 () -> q_gen_2 (q_gen_1) -> q_gen_1 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0, q_gen_4}, Q_f={q_gen_0}, Delta= { (q_gen_4) -> q_gen_4 () -> q_gen_4 (q_gen_4) -> q_gen_0 (q_gen_4) -> q_gen_0 () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, z])) -> BOT -> 4 (plus([m, i, _f])) -> le([i, s(_f)]) -> 4 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 7 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 7, which took 0.014732 s (model generation: 0.012704, model checking: 0.002028): Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { (q_gen_2) -> q_gen_2 () -> q_gen_2 (q_gen_1) -> q_gen_1 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0, q_gen_13, q_gen_4}, Q_f={q_gen_0}, Delta= { () -> q_gen_13 (q_gen_4) -> q_gen_4 () -> q_gen_4 (q_gen_0) -> q_gen_0 (q_gen_4) -> q_gen_0 (q_gen_4) -> q_gen_0 (q_gen_13) -> q_gen_0 () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 7 () -> plus([n, z, n]) -> 7 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 5 (le([s(nn1), z])) -> BOT -> 5 (le([z, z])) -> BOT -> 5 (plus([m, i, _f])) -> le([i, s(_f)]) -> 5 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 10 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> s(z) ; mm -> z ; n -> z }) ------------------------------------------- Step 8, which took 0.015497 s (model generation: 0.013864, model checking: 0.001633): Model: |_ { le -> {{{ Q={q_gen_1, q_gen_2}, Q_f={q_gen_1}, Delta= { (q_gen_2) -> q_gen_2 () -> q_gen_2 (q_gen_1) -> q_gen_1 (q_gen_2) -> q_gen_1 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_0, q_gen_13, q_gen_15}, Q_f={q_gen_0}, Delta= { () -> q_gen_13 (q_gen_15) -> q_gen_15 (q_gen_13) -> q_gen_15 () -> q_gen_15 (q_gen_0) -> q_gen_0 (q_gen_15) -> q_gen_0 (q_gen_15) -> q_gen_0 (q_gen_13) -> q_gen_0 () -> q_gen_0 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 8 () -> plus([n, z, n]) -> 8 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 6 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 6 (le([s(nn1), z])) -> BOT -> 6 (le([z, z])) -> BOT -> 6 (plus([m, i, _f])) -> le([i, s(_f)]) -> 6 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 13 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> s(s(z)) ; mm -> z ; n -> s(z) }) Total time: 0.137023 Reason for stopping: Proved