Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: right Learning problem is: env: { nat -> {s, z} } definition: { (min, F: {() -> min([s(u), z, z]) () -> min([z, y, z]) (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)])} (min([_dda, _eda, _fda]) /\ min([_dda, _eda, _gda])) -> eq_nat([_fda, _gda]) ) } properties: {(min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda])} over-approximation: {min} under-approximation: {} Clause system for inference is: { () -> min([s(u), z, z]) -> 0 () -> min([z, y, z]) -> 0 (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 0 (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 0 } Solving took 0.039405 seconds. Proved Model: |_ { min -> {{{ Q={q_gen_5814, q_gen_5816}, Q_f={q_gen_5814}, Delta= { (q_gen_5816) -> q_gen_5816 () -> q_gen_5816 (q_gen_5814) -> q_gen_5814 (q_gen_5816) -> q_gen_5814 (q_gen_5816) -> q_gen_5814 () -> q_gen_5814 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.005833 s (model generation: 0.005385, model checking: 0.000448): Model: |_ { min -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 0 () -> min([z, y, z]) -> 3 (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 1 (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 1 } Sat witness: Found: (() -> min([z, y, z]), { y -> z }) ------------------------------------------- Step 1, which took 0.005568 s (model generation: 0.005398, model checking: 0.000170): Model: |_ { min -> {{{ Q={q_gen_5814}, Q_f={q_gen_5814}, Delta= { () -> q_gen_5814 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 3 () -> min([z, y, z]) -> 3 (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 1 (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 1 } Sat witness: Found: (() -> min([s(u), z, z]), { u -> z }) ------------------------------------------- Step 2, which took 0.006492 s (model generation: 0.006309, model checking: 0.000183): Model: |_ { min -> {{{ Q={q_gen_5814, q_gen_5816}, Q_f={q_gen_5814}, Delta= { () -> q_gen_5816 (q_gen_5816) -> q_gen_5814 () -> q_gen_5814 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 3 () -> min([z, y, z]) -> 3 (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 1 (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 4 } Sat witness: Found: ((min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]), { _cda -> z ; u -> z ; y1 -> z }) ------------------------------------------- Step 3, which took 0.009324 s (model generation: 0.008805, model checking: 0.000519): Model: |_ { min -> {{{ Q={q_gen_5814, q_gen_5816}, Q_f={q_gen_5814}, Delta= { () -> q_gen_5816 (q_gen_5814) -> q_gen_5814 (q_gen_5816) -> q_gen_5814 () -> q_gen_5814 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 3 () -> min([z, y, z]) -> 6 (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 2 (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 4 } Sat witness: Found: (() -> min([z, y, z]), { y -> s(s(z)) }) Total time: 0.039405 Reason for stopping: Proved