Solving ../../benchmarks/false/plus_odd_odd.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: right Learning problem is: env: { nat -> {s, z} } definition: { (is_odd, P: {() -> is_odd([s(z)]) (is_odd([n3])) -> is_odd([s(s(n3))]) (is_odd([s(s(n3))])) -> is_odd([n3]) (is_odd([z])) -> BOT} ) (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)])} (plus([_xga, _yga, _aha]) /\ plus([_xga, _yga, _zga])) -> eq_nat([_zga, _aha]) ) } properties: {(is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha])} over-approximation: {plus} under-approximation: {} Clause system for inference is: { () -> is_odd([s(z)]) -> 0 () -> plus([n, z, n]) -> 0 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 0 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 0 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 0 (is_odd([z])) -> BOT -> 0 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 0 } Solving took 0.069036 seconds. Disproved ------------------- STEPS: ------------------------------------------- Step 0, which took 0.005335 s (model generation: 0.004767, model checking: 0.000568): Model: |_ { is_odd -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 0 () -> plus([n, z, n]) -> 3 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 1 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 1 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 1 (is_odd([z])) -> BOT -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.004889 s (model generation: 0.004813, model checking: 0.000076): Model: |_ { is_odd -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 3 () -> plus([n, z, n]) -> 3 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 1 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 1 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 1 (is_odd([z])) -> BOT -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 1 } Sat witness: Found: (() -> is_odd([s(z)]), { }) ------------------------------------------- Step 2, which took 0.004920 s (model generation: 0.004653, model checking: 0.000267): Model: |_ { is_odd -> {{{ Q={q_gen_6509}, Q_f={q_gen_6509}, Delta= { (q_gen_6509) -> q_gen_6509 () -> q_gen_6509 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 3 () -> plus([n, z, n]) -> 3 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 1 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 1 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 1 (is_odd([z])) -> BOT -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: ((plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]), { _wga -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 3, which took 0.004465 s (model generation: 0.004456, model checking: 0.000009): Model: |_ { is_odd -> {{{ Q={q_gen_6509}, Q_f={q_gen_6509}, Delta= { (q_gen_6509) -> q_gen_6509 () -> q_gen_6509 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508, q_gen_6512}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6512 (q_gen_6512) -> q_gen_6508 () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 3 () -> plus([n, z, n]) -> 3 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 1 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 1 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 1 (is_odd([z])) -> BOT -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: ((is_odd([z])) -> BOT, { }) ------------------------------------------- Step 4, which took 0.004079 s (model generation: 0.003958, model checking: 0.000121): Model: |_ { is_odd -> {{{ Q={q_gen_6509, q_gen_6510}, Q_f={q_gen_6509}, Delta= { (q_gen_6510) -> q_gen_6509 () -> q_gen_6510 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508, q_gen_6512}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6512 (q_gen_6512) -> q_gen_6508 () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 3 () -> plus([n, z, n]) -> 3 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 4 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 2 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 2 (is_odd([z])) -> BOT -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: ((is_odd([n3])) -> is_odd([s(s(n3))]), { n3 -> s(z) }) ------------------------------------------- Step 5, which took 0.005438 s (model generation: 0.005261, model checking: 0.000177): Model: |_ { is_odd -> {{{ Q={q_gen_6509, q_gen_6510}, Q_f={q_gen_6509}, Delta= { (q_gen_6510) -> q_gen_6509 (q_gen_6509) -> q_gen_6510 () -> q_gen_6510 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508, q_gen_6512}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6512 (q_gen_6512) -> q_gen_6508 () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 3 () -> plus([n, z, n]) -> 6 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 4 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 3 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 3 (is_odd([z])) -> BOT -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 6, which took 0.006944 s (model generation: 0.006685, model checking: 0.000259): Model: |_ { is_odd -> {{{ Q={q_gen_6509, q_gen_6510}, Q_f={q_gen_6509}, Delta= { (q_gen_6510) -> q_gen_6509 (q_gen_6509) -> q_gen_6510 () -> q_gen_6510 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508, q_gen_6512}, Q_f={q_gen_6508}, Delta= { (q_gen_6512) -> q_gen_6512 () -> q_gen_6512 (q_gen_6512) -> q_gen_6508 (q_gen_6512) -> q_gen_6508 () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 4 () -> plus([n, z, n]) -> 6 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 4 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 4 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 4 (is_odd([z])) -> BOT -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: ((plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]), { _wga -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 7, which took 0.009344 s (model generation: 0.009043, model checking: 0.000301): Model: |_ { is_odd -> {{{ Q={q_gen_6509, q_gen_6510}, Q_f={q_gen_6509}, Delta= { (q_gen_6510) -> q_gen_6509 (q_gen_6509) -> q_gen_6510 () -> q_gen_6510 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508, q_gen_6512, q_gen_6520}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6520 (q_gen_6512) -> q_gen_6512 () -> q_gen_6512 (q_gen_6508) -> q_gen_6508 (q_gen_6512) -> q_gen_6508 (q_gen_6512) -> q_gen_6508 (q_gen_6520) -> q_gen_6508 () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 4 () -> plus([n, z, n]) -> 6 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 4 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 7 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 5 (is_odd([z])) -> BOT -> 5 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: ((is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]), { _bha -> s(s(z)) ; x -> s(z) ; y -> s(z) }) ------------------------------------------- Step 8, which took 0.008541 s (model generation: 0.008485, model checking: 0.000056): Model: |_ { is_odd -> {{{ Q={q_gen_6509, q_gen_6510}, Q_f={q_gen_6509}, Delta= { (q_gen_6509) -> q_gen_6509 (q_gen_6510) -> q_gen_6509 () -> q_gen_6510 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508, q_gen_6512, q_gen_6520}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6520 (q_gen_6512) -> q_gen_6512 () -> q_gen_6512 (q_gen_6508) -> q_gen_6508 (q_gen_6512) -> q_gen_6508 (q_gen_6512) -> q_gen_6508 (q_gen_6520) -> q_gen_6508 () -> q_gen_6508 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 5 () -> plus([n, z, n]) -> 6 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 5 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 7 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 8 (is_odd([z])) -> BOT -> 6 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: ((is_odd([s(s(n3))])) -> is_odd([n3]), { n3 -> z }) ------------------------------------------- Step 9, which took 0.009492 s (model generation: 0.009379, model checking: 0.000113): Model: |_ { is_odd -> {{{ Q={q_gen_6509, q_gen_6510}, Q_f={q_gen_6509}, Delta= { (q_gen_6510) -> q_gen_6509 (q_gen_6509) -> q_gen_6510 () -> q_gen_6510 } Datatype: Convolution form: right }}} ; plus -> {{{ Q={q_gen_6508, q_gen_6512, q_gen_6516, q_gen_6517, q_gen_6520}, Q_f={q_gen_6508}, Delta= { () -> q_gen_6520 () -> q_gen_6512 (q_gen_6512) -> q_gen_6516 (q_gen_6516) -> q_gen_6508 (q_gen_6512) -> q_gen_6508 () -> q_gen_6508 (q_gen_6517) -> q_gen_6517 (q_gen_6512) -> q_gen_6517 (q_gen_6520) -> q_gen_6517 } Datatype: Convolution form: right }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> is_odd([s(z)]) -> 6 () -> plus([n, z, n]) -> 9 (is_odd([n3])) -> is_odd([s(s(n3))]) -> 6 (is_odd([x]) /\ is_odd([y]) /\ plus([x, y, _bha])) -> is_odd([_bha]) -> 7 (is_odd([s(s(n3))])) -> is_odd([n3]) -> 8 (is_odd([z])) -> BOT -> 7 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(z) }) Total time: 0.069036 Reason for stopping: Disproved