Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)])} (plus([_yr, _zr, _as]) /\ plus([_yr, _zr, _bs])) -> eq_nat([_as, _bs]) ) (le, P: {() -> le([z, s(nn2)]) (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) (le([s(nn1), z])) -> BOT (le([z, z])) -> BOT} ) } properties: {(plus([s(n), m, _cs])) -> le([m, _cs])} over-approximation: {plus} under-approximation: {le} Clause system for inference is: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 0 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 0 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 0 (le([s(nn1), z])) -> BOT -> 0 (le([z, z])) -> BOT -> 0 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 0 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 0 } Solving took 0.374021 seconds. Proved Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4854, q_gen_4856, q_gen_4857, q_gen_4862}, Q_f={q_gen_4843, q_gen_4854}, Delta= { (q_gen_4856) -> q_gen_4856 () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4862) -> q_gen_4862 (q_gen_4856) -> q_gen_4862 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4854) -> q_gen_4854 (q_gen_4862) -> q_gen_4854 (q_gen_4862) -> q_gen_4854 (q_gen_4856) -> q_gen_4854 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.011496 s (model generation: 0.010628, model checking: 0.000868): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 1 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.008819 s (model generation: 0.008757, model checking: 0.000062): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 1 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 1 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 2, which took 0.008570 s (model generation: 0.008439, model checking: 0.000131): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845}, Q_f={q_gen_4844}, Delta= { () -> q_gen_4845 (q_gen_4845) -> q_gen_4844 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 4 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 2 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 3, which took 0.008448 s (model generation: 0.008327, model checking: 0.000121): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845}, Q_f={q_gen_4844}, Delta= { () -> q_gen_4845 (q_gen_4845) -> q_gen_4844 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4847 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 2 (le([s(nn1), z])) -> BOT -> 2 (le([z, z])) -> BOT -> 2 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 4 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 2 } Sat witness: Found: ((le([nn1, nn2])) -> le([s(nn1), s(nn2)]), { nn1 -> z ; nn2 -> s(z) }) ------------------------------------------- Step 4, which took 0.012100 s (model generation: 0.010508, model checking: 0.001592): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845}, Q_f={q_gen_4844}, Delta= { () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4847 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 3 (le([s(nn1), z])) -> BOT -> 3 (le([z, z])) -> BOT -> 3 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 4 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 3 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 5, which took 0.008719 s (model generation: 0.008628, model checking: 0.000091): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845}, Q_f={q_gen_4844}, Delta= { () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847}, Q_f={q_gen_4843}, Delta= { (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 3 (le([s(nn1), z])) -> BOT -> 3 (le([z, z])) -> BOT -> 3 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 4 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 6 } Sat witness: Found: ((plus([s(n), m, _cs])) -> le([m, _cs]), { _cs -> s(s(z)) ; m -> z ; n -> s(z) }) ------------------------------------------- Step 6, which took 0.009455 s (model generation: 0.009166, model checking: 0.000289): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847}, Q_f={q_gen_4843}, Delta= { (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 4 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, z])) -> BOT -> 4 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 7 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 6 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 7, which took 0.010389 s (model generation: 0.010173, model checking: 0.000216): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4856}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4843) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4856) -> q_gen_4843 () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 5 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 5 (le([s(nn1), z])) -> BOT -> 5 (le([z, z])) -> BOT -> 5 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 7 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 9 } Sat witness: Found: ((plus([s(n), m, _cs])) -> le([m, _cs]), { _cs -> s(z) ; m -> s(z) ; n -> z }) ------------------------------------------- Step 8, which took 0.012081 s (model generation: 0.012063, model checking: 0.000018): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 () -> q_gen_4844 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4856}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4843) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4856) -> q_gen_4843 () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 5 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 5 (le([s(nn1), z])) -> BOT -> 5 (le([z, z])) -> BOT -> 8 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 7 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 9 } Sat witness: Found: ((le([z, z])) -> BOT, { }) ------------------------------------------- Step 9, which took 0.010828 s (model generation: 0.010754, model checking: 0.000074): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4859}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4859) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 () -> q_gen_4859 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4856}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4843) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4856) -> q_gen_4843 () -> q_gen_4843 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 5 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 6 (le([z, z])) -> BOT -> 8 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 7 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 9 } Sat witness: Found: ((le([s(nn1), s(nn2)])) -> le([nn1, nn2]), { nn1 -> z ; nn2 -> z }) ------------------------------------------- Step 10, which took 0.013284 s (model generation: 0.011895, model checking: 0.001389): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4855, q_gen_4856}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4855) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4843) -> q_gen_4855 (q_gen_4856) -> q_gen_4855 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 7 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 6 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 7 (le([z, z])) -> BOT -> 8 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 10 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 9 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(s(z)) ; mm -> s(z) ; n -> s(z) }) ------------------------------------------- Step 11, which took 0.012374 s (model generation: 0.011970, model checking: 0.000404): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4846, q_gen_4847, q_gen_4856, q_gen_4857}, Q_f={q_gen_4843, q_gen_4846}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 (q_gen_4856) -> q_gen_4847 () -> q_gen_4847 () -> q_gen_4843 (q_gen_4846) -> q_gen_4846 (q_gen_4847) -> q_gen_4846 (q_gen_4847) -> q_gen_4846 (q_gen_4856) -> q_gen_4846 (q_gen_4843) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 7 () -> plus([n, z, n]) -> 8 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 7 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 9 (le([s(nn1), z])) -> BOT -> 8 (le([z, z])) -> BOT -> 9 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 10 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 12 } Sat witness: Found: ((plus([s(n), m, _cs])) -> le([m, _cs]), { _cs -> s(s(z)) ; m -> s(s(z)) ; n -> z }) ------------------------------------------- Step 12, which took 0.014160 s (model generation: 0.013925, model checking: 0.000235): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4850, q_gen_4853, q_gen_4856}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4856 (q_gen_4856) -> q_gen_4847 () -> q_gen_4847 (q_gen_4847) -> q_gen_4850 (q_gen_4850) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4843) -> q_gen_4853 (q_gen_4853) -> q_gen_4853 (q_gen_4847) -> q_gen_4853 (q_gen_4856) -> q_gen_4853 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 8 () -> plus([n, z, n]) -> 11 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 8 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 9 (le([s(nn1), z])) -> BOT -> 9 (le([z, z])) -> BOT -> 9 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 10 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 12 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(z) }) ------------------------------------------- Step 13, which took 0.016175 s (model generation: 0.014434, model checking: 0.001741): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4850, q_gen_4855, q_gen_4856}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4856 () -> q_gen_4847 (q_gen_4847) -> q_gen_4850 (q_gen_4856) -> q_gen_4850 (q_gen_4855) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4850) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4843) -> q_gen_4855 (q_gen_4850) -> q_gen_4855 (q_gen_4856) -> q_gen_4855 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 9 () -> plus([n, z, n]) -> 11 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 9 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 10 (le([s(nn1), z])) -> BOT -> 10 (le([z, z])) -> BOT -> 10 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 13 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 12 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(z) ; mm -> s(z) ; n -> z }) ------------------------------------------- Step 14, which took 0.015178 s (model generation: 0.014755, model checking: 0.000423): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4855, q_gen_4856, q_gen_4862}, Q_f={q_gen_4843}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4856) -> q_gen_4862 (q_gen_4855) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4843) -> q_gen_4855 (q_gen_4862) -> q_gen_4855 (q_gen_4856) -> q_gen_4855 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 10 () -> plus([n, z, n]) -> 12 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 10 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 11 (le([s(nn1), z])) -> BOT -> 11 (le([z, z])) -> BOT -> 11 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 13 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 15 } Sat witness: Found: ((plus([s(n), m, _cs])) -> le([m, _cs]), { _cs -> s(s(z)) ; m -> s(s(z)) ; n -> s(z) }) ------------------------------------------- Step 15, which took 0.014166 s (model generation: 0.013884, model checking: 0.000282): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858, q_gen_4859}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4858) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4859) -> q_gen_4858 () -> q_gen_4859 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4846, q_gen_4847, q_gen_4856, q_gen_4857}, Q_f={q_gen_4843, q_gen_4846}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 (q_gen_4856) -> q_gen_4847 () -> q_gen_4847 () -> q_gen_4843 (q_gen_4846) -> q_gen_4846 (q_gen_4847) -> q_gen_4846 (q_gen_4847) -> q_gen_4846 (q_gen_4856) -> q_gen_4846 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 11 () -> plus([n, z, n]) -> 12 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 11 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 14 (le([s(nn1), z])) -> BOT -> 12 (le([z, z])) -> BOT -> 12 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 13 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 15 } Sat witness: Found: ((le([s(nn1), s(nn2)])) -> le([nn1, nn2]), { nn1 -> s(z) ; nn2 -> s(z) }) ------------------------------------------- Step 16, which took 0.014783 s (model generation: 0.013595, model checking: 0.001188): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4849, q_gen_4856, q_gen_4857, q_gen_4862}, Q_f={q_gen_4843, q_gen_4849}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4856) -> q_gen_4862 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4849) -> q_gen_4849 (q_gen_4847) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4856) -> q_gen_4849 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 12 () -> plus([n, z, n]) -> 13 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 12 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 14 (le([s(nn1), z])) -> BOT -> 13 (le([z, z])) -> BOT -> 13 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 16 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 15 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(s(s(z))) ; mm -> z ; n -> s(s(s(z))) }) ------------------------------------------- Step 17, which took 0.016339 s (model generation: 0.015635, model checking: 0.000704): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4850, q_gen_4853, q_gen_4856, q_gen_4857}, Q_f={q_gen_4843, q_gen_4853}, Delta= { () -> q_gen_4856 (q_gen_4850) -> q_gen_4847 () -> q_gen_4847 (q_gen_4847) -> q_gen_4850 (q_gen_4856) -> q_gen_4850 (q_gen_4850) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4853) -> q_gen_4853 (q_gen_4847) -> q_gen_4853 (q_gen_4850) -> q_gen_4853 (q_gen_4856) -> q_gen_4853 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 13 () -> plus([n, z, n]) -> 14 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 13 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 15 (le([s(nn1), z])) -> BOT -> 14 (le([z, z])) -> BOT -> 14 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 16 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 18 } Sat witness: Found: ((plus([s(n), m, _cs])) -> le([m, _cs]), { _cs -> s(s(s(z))) ; m -> s(s(s(z))) ; n -> z }) ------------------------------------------- Step 18, which took 0.018733 s (model generation: 0.017793, model checking: 0.000940): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4849, q_gen_4856, q_gen_4857, q_gen_4862}, Q_f={q_gen_4843, q_gen_4849}, Delta= { () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4862) -> q_gen_4862 (q_gen_4856) -> q_gen_4862 (q_gen_4849) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4847) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4856) -> q_gen_4849 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 14 () -> plus([n, z, n]) -> 15 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 14 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 16 (le([s(nn1), z])) -> BOT -> 15 (le([z, z])) -> BOT -> 15 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 19 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 18 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(s(z)) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 19, which took 0.021062 s (model generation: 0.020454, model checking: 0.000608): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4849, q_gen_4856, q_gen_4857, q_gen_4862}, Q_f={q_gen_4843, q_gen_4849}, Delta= { (q_gen_4856) -> q_gen_4856 () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 (q_gen_4862) -> q_gen_4847 () -> q_gen_4847 (q_gen_4856) -> q_gen_4862 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4849) -> q_gen_4849 (q_gen_4847) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4856) -> q_gen_4849 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 (q_gen_4862) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 15 () -> plus([n, z, n]) -> 16 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 15 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 17 (le([s(nn1), z])) -> BOT -> 16 (le([z, z])) -> BOT -> 16 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 22 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 19 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(s(z)) ; mm -> z ; n -> s(s(z)) }) ------------------------------------------- Step 20, which took 0.023710 s (model generation: 0.022569, model checking: 0.001141): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4849, q_gen_4856, q_gen_4857, q_gen_4862}, Q_f={q_gen_4843, q_gen_4849}, Delta= { (q_gen_4856) -> q_gen_4856 () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 (q_gen_4862) -> q_gen_4847 () -> q_gen_4847 (q_gen_4856) -> q_gen_4862 (q_gen_4849) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4847) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4856) -> q_gen_4849 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 16 () -> plus([n, z, n]) -> 17 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 16 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 18 (le([s(nn1), z])) -> BOT -> 17 (le([z, z])) -> BOT -> 17 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 25 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 20 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(s(z)) ; mm -> s(z) ; n -> s(s(z)) }) ------------------------------------------- Step 21, which took 0.029768 s (model generation: 0.028823, model checking: 0.000945): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4849, q_gen_4856, q_gen_4857, q_gen_4862}, Q_f={q_gen_4843, q_gen_4849}, Delta= { (q_gen_4856) -> q_gen_4856 () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 (q_gen_4862) -> q_gen_4847 () -> q_gen_4847 (q_gen_4856) -> q_gen_4862 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4849) -> q_gen_4849 (q_gen_4847) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4862) -> q_gen_4849 (q_gen_4856) -> q_gen_4849 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 17 () -> plus([n, z, n]) -> 18 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 17 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 19 (le([s(nn1), z])) -> BOT -> 18 (le([z, z])) -> BOT -> 18 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 28 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 21 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(s(s(z))) ; mm -> s(s(z)) ; n -> s(z) }) ------------------------------------------- Step 22, which took 0.030178 s (model generation: 0.029141, model checking: 0.001037): Model: |_ { le -> {{{ Q={q_gen_4844, q_gen_4845, q_gen_4858}, Q_f={q_gen_4844}, Delta= { (q_gen_4845) -> q_gen_4845 () -> q_gen_4845 (q_gen_4844) -> q_gen_4844 (q_gen_4845) -> q_gen_4844 (q_gen_4858) -> q_gen_4858 () -> q_gen_4858 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_4843, q_gen_4847, q_gen_4855, q_gen_4856, q_gen_4857, q_gen_4862}, Q_f={q_gen_4843}, Delta= { (q_gen_4856) -> q_gen_4856 () -> q_gen_4856 (q_gen_4847) -> q_gen_4847 () -> q_gen_4847 (q_gen_4862) -> q_gen_4862 (q_gen_4856) -> q_gen_4862 (q_gen_4855) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 (q_gen_4847) -> q_gen_4843 () -> q_gen_4843 (q_gen_4862) -> q_gen_4855 (q_gen_4862) -> q_gen_4855 (q_gen_4856) -> q_gen_4855 (q_gen_4843) -> q_gen_4857 (q_gen_4857) -> q_gen_4857 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 18 () -> plus([n, z, n]) -> 19 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 18 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 20 (le([s(nn1), z])) -> BOT -> 19 (le([z, z])) -> BOT -> 19 (plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]) -> 31 (plus([s(n), m, _cs])) -> le([m, _cs]) -> 22 } Sat witness: Found: ((plus([n, mm, _xr])) -> plus([n, s(mm), s(_xr)]), { _xr -> s(s(s(z))) ; mm -> s(z) ; n -> s(s(z)) }) Total time: 0.374021 Reason for stopping: Proved