Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)])} (plus([_oe, _pe, _qe]) /\ plus([_oe, _pe, _re])) -> eq_nat([_qe, _re]) ) (le, P: {() -> le([z, s(nn2)]) (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) (le([s(nn1), z])) -> BOT (le([z, z])) -> BOT} ) } properties: {(le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se])} over-approximation: {plus} under-approximation: {} Clause system for inference is: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 0 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 0 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 0 (le([s(nn1), z])) -> BOT -> 0 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 0 (le([z, z])) -> BOT -> 0 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 0 } Solving took 0.254782 seconds. Proved Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1206, q_gen_1207, q_gen_1212}, Q_f={q_gen_1193, q_gen_1196}, Delta= { (q_gen_1206) -> q_gen_1206 () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1212) -> q_gen_1212 (q_gen_1206) -> q_gen_1212 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1196) -> q_gen_1196 (q_gen_1212) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1212) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 (q_gen_1207) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.010330 s (model generation: 0.009653, model checking: 0.000677): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.007180 s (model generation: 0.007120, model checking: 0.000060): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 1 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 2, which took 0.007097 s (model generation: 0.007001, model checking: 0.000096): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195}, Q_f={q_gen_1194}, Delta= { () -> q_gen_1195 (q_gen_1195) -> q_gen_1194 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 1 (le([z, z])) -> BOT -> 1 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 4 } Sat witness: Found: ((plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]), { _ne -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 3, which took 0.007795 s (model generation: 0.007602, model checking: 0.000193): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195}, Q_f={q_gen_1194}, Delta= { () -> q_gen_1195 (q_gen_1195) -> q_gen_1194 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1197 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 2 (le([s(nn1), z])) -> BOT -> 2 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 2 (le([z, z])) -> BOT -> 2 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 4 } Sat witness: Found: ((le([nn1, nn2])) -> le([s(nn1), s(nn2)]), { nn1 -> z ; nn2 -> s(z) }) ------------------------------------------- Step 4, which took 0.007734 s (model generation: 0.007501, model checking: 0.000233): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195}, Q_f={q_gen_1194}, Delta= { () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1197 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 3 (le([s(nn1), z])) -> BOT -> 3 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 3 (le([z, z])) -> BOT -> 3 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 5, which took 0.014167 s (model generation: 0.013902, model checking: 0.000265): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195}, Q_f={q_gen_1194}, Delta= { () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197}, Q_f={q_gen_1193}, Delta= { (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1197) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 4 (le([z, z])) -> BOT -> 4 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 4 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> s(z) }) ------------------------------------------- Step 6, which took 0.011860 s (model generation: 0.011610, model checking: 0.000250): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197}, Q_f={q_gen_1193}, Delta= { (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1197) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 4 (le([z, z])) -> BOT -> 4 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 7 } Sat witness: Found: ((plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]), { _ne -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 7, which took 0.009072 s (model generation: 0.008957, model checking: 0.000115): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197, q_gen_1206}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1193) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1206) -> q_gen_1193 () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 7 (le([z, z])) -> BOT -> 5 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 7 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]), { _se -> s(z) ; m -> s(z) ; n -> s(z) }) ------------------------------------------- Step 8, which took 0.011112 s (model generation: 0.010978, model checking: 0.000134): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 () -> q_gen_1194 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197, q_gen_1206}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1193) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1206) -> q_gen_1193 () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 5 (le([s(nn1), z])) -> BOT -> 5 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 7 (le([z, z])) -> BOT -> 8 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 7 } Sat witness: Found: ((le([z, z])) -> BOT, { }) ------------------------------------------- Step 9, which took 0.010388 s (model generation: 0.010315, model checking: 0.000073): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1209}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1209) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 () -> q_gen_1209 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197, q_gen_1206}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1193) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1206) -> q_gen_1193 () -> q_gen_1193 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 6 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 7 (le([z, z])) -> BOT -> 8 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 7 } Sat witness: Found: ((le([s(nn1), s(nn2)])) -> le([nn1, nn2]), { nn1 -> z ; nn2 -> z }) ------------------------------------------- Step 10, which took 0.012132 s (model generation: 0.011119, model checking: 0.001013): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197, q_gen_1205, q_gen_1206}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1205) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1193) -> q_gen_1205 (q_gen_1206) -> q_gen_1205 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 7 () -> plus([n, z, n]) -> 7 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 6 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 7 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 7 (le([z, z])) -> BOT -> 8 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 10 } Sat witness: Found: ((plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]), { _ne -> s(s(z)) ; mm -> s(z) ; n -> s(z) }) ------------------------------------------- Step 11, which took 0.011133 s (model generation: 0.010905, model checking: 0.000228): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1206, q_gen_1207}, Q_f={q_gen_1193, q_gen_1196}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 (q_gen_1206) -> q_gen_1197 () -> q_gen_1197 () -> q_gen_1193 (q_gen_1196) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 7 () -> plus([n, z, n]) -> 7 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 7 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 8 (le([s(nn1), z])) -> BOT -> 7 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 10 (le([z, z])) -> BOT -> 8 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 10 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]), { _se -> s(s(z)) ; m -> s(z) ; n -> s(s(z)) }) ------------------------------------------- Step 12, which took 0.013726 s (model generation: 0.012424, model checking: 0.001302): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1206, q_gen_1207}, Q_f={q_gen_1193, q_gen_1196}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 (q_gen_1206) -> q_gen_1197 () -> q_gen_1197 (q_gen_1196) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1197) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 8 () -> plus([n, z, n]) -> 8 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 8 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 9 (le([s(nn1), z])) -> BOT -> 8 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 10 (le([z, z])) -> BOT -> 9 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 13 } Sat witness: Found: ((plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]), { _ne -> s(s(z)) ; mm -> z ; n -> s(s(z)) }) ------------------------------------------- Step 13, which took 0.014785 s (model generation: 0.014127, model checking: 0.000658): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1197, q_gen_1205, q_gen_1206, q_gen_1212}, Q_f={q_gen_1193}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1206) -> q_gen_1212 (q_gen_1205) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1193) -> q_gen_1205 (q_gen_1212) -> q_gen_1205 (q_gen_1212) -> q_gen_1205 (q_gen_1206) -> q_gen_1205 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 9 () -> plus([n, z, n]) -> 9 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 9 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 10 (le([s(nn1), z])) -> BOT -> 9 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 13 (le([z, z])) -> BOT -> 10 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 13 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]), { _se -> s(s(z)) ; m -> s(s(z)) ; n -> s(s(z)) }) ------------------------------------------- Step 14, which took 0.015393 s (model generation: 0.014779, model checking: 0.000614): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208, q_gen_1209}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1208) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1209) -> q_gen_1208 () -> q_gen_1209 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1206, q_gen_1207}, Q_f={q_gen_1193, q_gen_1196}, Delta= { () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 (q_gen_1206) -> q_gen_1197 () -> q_gen_1197 (q_gen_1207) -> q_gen_1193 () -> q_gen_1193 (q_gen_1196) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 10 () -> plus([n, z, n]) -> 10 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 10 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 10 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 13 (le([z, z])) -> BOT -> 11 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 13 } Sat witness: Found: ((le([s(nn1), s(nn2)])) -> le([nn1, nn2]), { nn1 -> s(z) ; nn2 -> s(z) }) ------------------------------------------- Step 15, which took 0.014272 s (model generation: 0.014012, model checking: 0.000260): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1200, q_gen_1206, q_gen_1207}, Q_f={q_gen_1193, q_gen_1196}, Delta= { () -> q_gen_1206 () -> q_gen_1197 (q_gen_1197) -> q_gen_1200 (q_gen_1206) -> q_gen_1200 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1196) -> q_gen_1196 (q_gen_1200) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1200) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 (q_gen_1207) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 10 () -> plus([n, z, n]) -> 13 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 11 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 11 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 13 (le([z, z])) -> BOT -> 11 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 13 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(s(z))) }) ------------------------------------------- Step 16, which took 0.015576 s (model generation: 0.015075, model checking: 0.000501): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1200, q_gen_1206, q_gen_1207}, Q_f={q_gen_1193, q_gen_1196}, Delta= { () -> q_gen_1206 () -> q_gen_1197 (q_gen_1197) -> q_gen_1200 (q_gen_1200) -> q_gen_1200 (q_gen_1206) -> q_gen_1200 (q_gen_1196) -> q_gen_1193 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1200) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1200) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 (q_gen_1207) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 11 () -> plus([n, z, n]) -> 13 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 12 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 12 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 13 (le([z, z])) -> BOT -> 12 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 16 } Sat witness: Found: ((plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]), { _ne -> s(s(z)) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 17, which took 0.018330 s (model generation: 0.018092, model checking: 0.000238): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1200, q_gen_1206, q_gen_1207}, Q_f={q_gen_1193, q_gen_1196}, Delta= { (q_gen_1206) -> q_gen_1206 () -> q_gen_1206 (q_gen_1200) -> q_gen_1197 () -> q_gen_1197 (q_gen_1197) -> q_gen_1200 (q_gen_1206) -> q_gen_1200 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1196) -> q_gen_1196 (q_gen_1200) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1200) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 (q_gen_1207) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 12 () -> plus([n, z, n]) -> 13 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 13 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 13 (le([s(nn1), z])) -> BOT -> 13 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 16 (le([z, z])) -> BOT -> 13 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 16 } Sat witness: Found: ((le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]), { _se -> s(s(s(z))) ; m -> s(z) ; n -> s(s(s(z))) }) ------------------------------------------- Step 18, which took 0.020843 s (model generation: 0.019960, model checking: 0.000883): Model: |_ { le -> {{{ Q={q_gen_1194, q_gen_1195, q_gen_1208}, Q_f={q_gen_1194}, Delta= { (q_gen_1195) -> q_gen_1195 () -> q_gen_1195 (q_gen_1194) -> q_gen_1194 (q_gen_1195) -> q_gen_1194 (q_gen_1208) -> q_gen_1208 () -> q_gen_1208 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_1193, q_gen_1196, q_gen_1197, q_gen_1206, q_gen_1207, q_gen_1212}, Q_f={q_gen_1193, q_gen_1196}, Delta= { (q_gen_1206) -> q_gen_1206 () -> q_gen_1206 (q_gen_1197) -> q_gen_1197 () -> q_gen_1197 (q_gen_1206) -> q_gen_1212 (q_gen_1197) -> q_gen_1193 () -> q_gen_1193 (q_gen_1196) -> q_gen_1196 (q_gen_1212) -> q_gen_1196 (q_gen_1197) -> q_gen_1196 (q_gen_1212) -> q_gen_1196 (q_gen_1206) -> q_gen_1196 (q_gen_1193) -> q_gen_1207 (q_gen_1207) -> q_gen_1207 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 13 () -> plus([n, z, n]) -> 14 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 14 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 14 (le([s(nn1), z])) -> BOT -> 14 (le([z, m]) /\ le([z, n]) /\ plus([n, m, _se])) -> le([n, _se]) -> 16 (le([z, z])) -> BOT -> 14 (plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]) -> 19 } Sat witness: Found: ((plus([n, mm, _ne])) -> plus([n, s(mm), s(_ne)]), { _ne -> s(s(z)) ; mm -> s(z) ; n -> z }) Total time: 0.254782 Reason for stopping: Proved