Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (double, F: {() -> double([z, z]) (double([nn, _saa])) -> double([s(nn), s(s(_saa))])} (double([_taa, _uaa]) /\ double([_taa, _vaa])) -> eq_nat([_uaa, _vaa]) ) (is_zero, P: {(double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]) (double([n, z])) -> is_zero([n])} ) } properties: {() -> is_zero([z])} over-approximation: {double} under-approximation: {is_zero} Clause system for inference is: { () -> double([z, z]) -> 0 () -> is_zero([z]) -> 0 (double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]) -> 0 (double([n, z])) -> is_zero([n]) -> 0 (double([nn, _saa])) -> double([s(nn), s(s(_saa))]) -> 0 } Solving took 0.073851 seconds. Proved Model: |_ { double -> {{{ Q={q_gen_7148, q_gen_7150, q_gen_7151}, Q_f={q_gen_7148}, Delta= { (q_gen_7151) -> q_gen_7151 () -> q_gen_7151 (q_gen_7148) -> q_gen_7148 (q_gen_7150) -> q_gen_7148 () -> q_gen_7148 (q_gen_7151) -> q_gen_7150 } Datatype: Convolution form: left }}} ; is_zero -> {{{ Q={q_gen_7147}, Q_f={q_gen_7147}, Delta= { () -> q_gen_7147 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.030528 s (model generation: 0.030431, model checking: 0.000097): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; is_zero -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 0 () -> is_zero([z]) -> 3 (double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]) -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _saa])) -> double([s(nn), s(s(_saa))]) -> 1 } Sat witness: Found: (() -> is_zero([z]), { }) ------------------------------------------- Step 1, which took 0.008516 s (model generation: 0.008470, model checking: 0.000046): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; is_zero -> {{{ Q={q_gen_7147}, Q_f={q_gen_7147}, Delta= { () -> q_gen_7147 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]) -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _saa])) -> double([s(nn), s(s(_saa))]) -> 1 } Sat witness: Found: (() -> double([z, z]), { }) ------------------------------------------- Step 2, which took 0.008184 s (model generation: 0.008075, model checking: 0.000109): Model: |_ { double -> {{{ Q={q_gen_7148}, Q_f={q_gen_7148}, Delta= { () -> q_gen_7148 } Datatype: Convolution form: left }}} ; is_zero -> {{{ Q={q_gen_7147}, Q_f={q_gen_7147}, Delta= { () -> q_gen_7147 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]) -> 1 (double([n, z])) -> is_zero([n]) -> 1 (double([nn, _saa])) -> double([s(nn), s(s(_saa))]) -> 4 } Sat witness: Found: ((double([nn, _saa])) -> double([s(nn), s(s(_saa))]), { _saa -> z ; nn -> z }) ------------------------------------------- Step 3, which took 0.007796 s (model generation: 0.007708, model checking: 0.000088): Model: |_ { double -> {{{ Q={q_gen_7148, q_gen_7151}, Q_f={q_gen_7148}, Delta= { () -> q_gen_7151 (q_gen_7148) -> q_gen_7148 (q_gen_7151) -> q_gen_7148 () -> q_gen_7148 } Datatype: Convolution form: left }}} ; is_zero -> {{{ Q={q_gen_7147}, Q_f={q_gen_7147}, Delta= { () -> q_gen_7147 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 () -> is_zero([z]) -> 3 (double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]) -> 4 (double([n, z])) -> is_zero([n]) -> 2 (double([nn, _saa])) -> double([s(nn), s(s(_saa))]) -> 4 } Sat witness: Found: ((double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]), { _waa -> s(z) ; n -> z }) ------------------------------------------- Step 4, which took 0.007768 s (model generation: 0.007567, model checking: 0.000201): Model: |_ { double -> {{{ Q={q_gen_7148, q_gen_7150, q_gen_7151}, Q_f={q_gen_7148}, Delta= { () -> q_gen_7151 (q_gen_7150) -> q_gen_7148 () -> q_gen_7148 (q_gen_7151) -> q_gen_7150 } Datatype: Convolution form: left }}} ; is_zero -> {{{ Q={q_gen_7147}, Q_f={q_gen_7147}, Delta= { () -> q_gen_7147 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 4 () -> is_zero([z]) -> 4 (double([n, _waa]) /\ is_zero([n])) -> eq_nat([_waa, z]) -> 4 (double([n, z])) -> is_zero([n]) -> 3 (double([nn, _saa])) -> double([s(nn), s(s(_saa))]) -> 7 } Sat witness: Found: ((double([nn, _saa])) -> double([s(nn), s(s(_saa))]), { _saa -> s(s(z)) ; nn -> s(z) }) Total time: 0.073851 Reason for stopping: Proved