Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)])} (plus([_b, _c, _d]) /\ plus([_b, _c, _e])) -> eq_nat([_d, _e]) ) (mult, F: {() -> mult([n, z, z]) (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g])} (mult([_h, _i, _j]) /\ mult([_h, _i, _k])) -> eq_nat([_j, _k]) ) (leq, P: {() -> leq([z, s(nn2)]) () -> leq([z, z]) (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) (leq([s(nn1), z])) -> BOT} ) } properties: {(mult([n, s(m), _l])) -> leq([n, _l])} over-approximation: {mult, plus} under-approximation: {leq} Clause system for inference is: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 0 () -> plus([n, z, n]) -> 0 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 0 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 0 (leq([s(nn1), z])) -> BOT -> 0 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 0 (mult([n, s(m), _l])) -> leq([n, _l]) -> 0 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 0 } Solving took 0.653942 seconds. Proved Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34, q_gen_43}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_43) -> q_gen_43 (q_gen_14) -> q_gen_43 (q_gen_13) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_43) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_14) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 (q_gen_43) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.011991 s (model generation: 0.009814, model checking: 0.002177): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 0 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 1 (mult([n, s(m), _l])) -> leq([n, _l]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.010151 s (model generation: 0.010052, model checking: 0.000099): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_6}, Q_f={q_gen_6}, Delta= { () -> q_gen_6 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 1 (mult([n, s(m), _l])) -> leq([n, _l]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 1 } Sat witness: Found: (() -> mult([n, z, z]), { n -> z }) ------------------------------------------- Step 2, which took 0.009087 s (model generation: 0.009041, model checking: 0.000046): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_7}, Q_f={q_gen_7}, Delta= { () -> q_gen_7 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_6}, Q_f={q_gen_6}, Delta= { () -> q_gen_6 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 1 (mult([n, s(m), _l])) -> leq([n, _l]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 1 } Sat witness: Found: (() -> leq([z, z]), { }) ------------------------------------------- Step 3, which took 0.010363 s (model generation: 0.010293, model checking: 0.000070): Model: |_ { leq -> {{{ Q={q_gen_8}, Q_f={q_gen_8}, Delta= { () -> q_gen_8 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_7}, Q_f={q_gen_7}, Delta= { () -> q_gen_7 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_6}, Q_f={q_gen_6}, Delta= { () -> q_gen_6 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 1 (mult([n, s(m), _l])) -> leq([n, _l]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 1 } Sat witness: Found: (() -> leq([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 4, which took 0.008957 s (model generation: 0.008805, model checking: 0.000152): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_8}, Q_f={q_gen_8}, Delta= { () -> q_gen_10 (q_gen_10) -> q_gen_8 () -> q_gen_8 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_7}, Q_f={q_gen_7}, Delta= { () -> q_gen_7 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_6}, Q_f={q_gen_6}, Delta= { () -> q_gen_6 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 1 (mult([n, s(m), _l])) -> leq([n, _l]) -> 1 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 5, which took 0.007945 s (model generation: 0.007808, model checking: 0.000137): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_8}, Q_f={q_gen_8}, Delta= { () -> q_gen_10 (q_gen_10) -> q_gen_8 () -> q_gen_8 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_7}, Q_f={q_gen_7}, Delta= { () -> q_gen_7 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12}, Q_f={q_gen_11}, Delta= { () -> q_gen_12 (q_gen_12) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 4 (mult([n, s(m), _l])) -> leq([n, _l]) -> 2 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> z ; _g -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 6, which took 0.009368 s (model generation: 0.008431, model checking: 0.000937): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_8}, Q_f={q_gen_8}, Delta= { () -> q_gen_10 (q_gen_10) -> q_gen_8 () -> q_gen_8 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14}, Q_f={q_gen_13}, Delta= { () -> q_gen_14 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12}, Q_f={q_gen_11}, Delta= { () -> q_gen_12 (q_gen_12) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 2 (leq([s(nn1), z])) -> BOT -> 2 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 4 (mult([n, s(m), _l])) -> leq([n, _l]) -> 2 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: ((leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]), { nn1 -> z ; nn2 -> z }) ------------------------------------------- Step 7, which took 0.008671 s (model generation: 0.008445, model checking: 0.000226): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14}, Q_f={q_gen_13}, Delta= { () -> q_gen_14 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12}, Q_f={q_gen_11}, Delta= { () -> q_gen_12 (q_gen_12) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 3 (leq([s(nn1), z])) -> BOT -> 3 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 4 (mult([n, s(m), _l])) -> leq([n, _l]) -> 3 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 8, which took 0.009072 s (model generation: 0.008850, model checking: 0.000222): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14}, Q_f={q_gen_13}, Delta= { () -> q_gen_14 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12}, Q_f={q_gen_11}, Delta= { (q_gen_12) -> q_gen_12 () -> q_gen_12 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 4 (mult([n, s(m), _l])) -> leq([n, _l]) -> 4 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: (() -> mult([n, z, z]), { n -> s(s(z)) }) ------------------------------------------- Step 9, which took 0.008611 s (model generation: 0.008509, model checking: 0.000102): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12}, Q_f={q_gen_11}, Delta= { (q_gen_12) -> q_gen_12 () -> q_gen_12 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 4 (mult([n, s(m), _l])) -> leq([n, _l]) -> 4 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 4 } Sat witness: Found: (() -> leq([z, s(nn2)]), { nn2 -> s(z) }) ------------------------------------------- Step 10, which took 0.010103 s (model generation: 0.009953, model checking: 0.000150): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12}, Q_f={q_gen_11}, Delta= { (q_gen_12) -> q_gen_12 () -> q_gen_12 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 4 (mult([n, s(m), _l])) -> leq([n, _l]) -> 4 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 7 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 11, which took 0.013031 s (model generation: 0.012842, model checking: 0.000189): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { () -> q_gen_25 (q_gen_12) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 7 (mult([n, s(m), _l])) -> leq([n, _l]) -> 5 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 7 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> z ; _g -> s(z) ; mm -> z ; n -> z }) ------------------------------------------- Step 12, which took 0.011611 s (model generation: 0.011033, model checking: 0.000578): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { () -> q_gen_25 (q_gen_12) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 5 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 5 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 5 (leq([s(nn1), z])) -> BOT -> 5 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 7 (mult([n, s(m), _l])) -> leq([n, _l]) -> 6 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 10 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> s(z) ; mm -> z ; n -> z }) ------------------------------------------- Step 13, which took 0.013061 s (model generation: 0.012541, model checking: 0.000520): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 6 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 6 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 6 (leq([s(nn1), z])) -> BOT -> 6 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 10 (mult([n, s(m), _l])) -> leq([n, _l]) -> 7 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 10 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> z ; _g -> s(s(z)) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 14, which took 0.014922 s (model generation: 0.014688, model checking: 0.000234): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 7 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 7 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 7 (leq([s(nn1), z])) -> BOT -> 7 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 10 (mult([n, s(m), _l])) -> leq([n, _l]) -> 10 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 10 } Sat witness: Found: ((mult([n, s(m), _l])) -> leq([n, _l]), { _l -> s(z) ; m -> z ; n -> s(s(z)) }) ------------------------------------------- Step 15, which took 0.013473 s (model generation: 0.013438, model checking: 0.000035): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 7 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 7 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 7 (leq([s(nn1), z])) -> BOT -> 10 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 10 (mult([n, s(m), _l])) -> leq([n, _l]) -> 10 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 10 } Sat witness: Found: ((leq([s(nn1), z])) -> BOT, { nn1 -> z }) ------------------------------------------- Step 16, which took 0.013320 s (model generation: 0.013230, model checking: 0.000090): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_36}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_36) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_10) -> q_gen_36 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 7 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 7 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 10 (leq([s(nn1), z])) -> BOT -> 10 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 10 (mult([n, s(m), _l])) -> leq([n, _l]) -> 10 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 10 } Sat witness: Found: ((leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]), { nn1 -> s(z) ; nn2 -> z }) ------------------------------------------- Step 17, which took 0.017934 s (model generation: 0.017293, model checking: 0.000641): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27, q_gen_33}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_33) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_33 (q_gen_14) -> q_gen_33 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 8 () -> leq([z, z]) -> 8 () -> mult([n, z, z]) -> 8 () -> plus([n, z, n]) -> 8 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 8 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 10 (leq([s(nn1), z])) -> BOT -> 10 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 10 (mult([n, s(m), _l])) -> leq([n, _l]) -> 10 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 13 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> s(s(z)) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 18, which took 0.015395 s (model generation: 0.015002, model checking: 0.000393): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27, q_gen_33}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_33) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_33 (q_gen_14) -> q_gen_33 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 9 () -> leq([z, z]) -> 9 () -> mult([n, z, z]) -> 9 () -> plus([n, z, n]) -> 9 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 9 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 10 (leq([s(nn1), z])) -> BOT -> 10 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 10 (mult([n, s(m), _l])) -> leq([n, _l]) -> 13 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 13 } Sat witness: Found: ((mult([n, s(m), _l])) -> leq([n, _l]), { _l -> s(s(z)) ; m -> s(z) ; n -> s(s(s(z))) }) ------------------------------------------- Step 19, which took 0.019888 s (model generation: 0.019288, model checking: 0.000600): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_14) -> q_gen_18 (q_gen_27) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 10 () -> leq([z, z]) -> 10 () -> mult([n, z, z]) -> 10 () -> plus([n, z, n]) -> 10 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 10 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 10 (leq([s(nn1), z])) -> BOT -> 10 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 13 (mult([n, s(m), _l])) -> leq([n, _l]) -> 13 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 13 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> s(z) ; _g -> s(z) ; mm -> s(z) ; n -> z }) ------------------------------------------- Step 20, which took 0.017855 s (model generation: 0.017093, model checking: 0.000762): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_14) -> q_gen_18 (q_gen_27) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 11 () -> leq([z, z]) -> 11 () -> mult([n, z, z]) -> 11 () -> plus([n, z, n]) -> 11 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 11 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 11 (leq([s(nn1), z])) -> BOT -> 11 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 16 (mult([n, s(m), _l])) -> leq([n, _l]) -> 14 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 14 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> s(z) ; _g -> s(s(z)) ; mm -> s(z) ; n -> z }) ------------------------------------------- Step 21, which took 0.017114 s (model generation: 0.016791, model checking: 0.000323): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_19, q_gen_27, q_gen_30}, Q_f={q_gen_13}, Delta= { () -> q_gen_14 (q_gen_14) -> q_gen_19 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_19) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_30) -> q_gen_30 (q_gen_14) -> q_gen_30 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 11 () -> leq([z, z]) -> 11 () -> mult([n, z, z]) -> 14 () -> plus([n, z, n]) -> 12 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 12 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 12 (leq([s(nn1), z])) -> BOT -> 12 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 16 (mult([n, s(m), _l])) -> leq([n, _l]) -> 14 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 14 } Sat witness: Found: (() -> mult([n, z, z]), { n -> s(z) }) ------------------------------------------- Step 22, which took 0.016889 s (model generation: 0.016063, model checking: 0.000826): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_14) -> q_gen_18 (q_gen_27) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 12 () -> leq([z, z]) -> 12 () -> mult([n, z, z]) -> 15 () -> plus([n, z, n]) -> 13 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 13 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 13 (leq([s(nn1), z])) -> BOT -> 13 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 19 (mult([n, s(m), _l])) -> leq([n, _l]) -> 15 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 15 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> z ; _g -> s(s(s(z))) ; mm -> z ; n -> s(s(z)) }) ------------------------------------------- Step 23, which took 0.019409 s (model generation: 0.018917, model checking: 0.000492): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_13) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_18 (q_gen_27) -> q_gen_18 () -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 13 () -> leq([z, z]) -> 13 () -> mult([n, z, z]) -> 15 () -> plus([n, z, n]) -> 14 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 14 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 14 (leq([s(nn1), z])) -> BOT -> 14 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 19 (mult([n, s(m), _l])) -> leq([n, _l]) -> 18 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 16 } Sat witness: Found: ((mult([n, s(m), _l])) -> leq([n, _l]), { _l -> s(s(z)) ; m -> z ; n -> s(s(s(z))) }) ------------------------------------------- Step 24, which took 0.020360 s (model generation: 0.020155, model checking: 0.000205): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35, q_gen_36}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_35) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_36) -> q_gen_35 (q_gen_10) -> q_gen_36 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_27, q_gen_33}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_33) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_33 (q_gen_27) -> q_gen_33 (q_gen_14) -> q_gen_33 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 14 () -> leq([z, z]) -> 14 () -> mult([n, z, z]) -> 15 () -> plus([n, z, n]) -> 14 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 14 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 17 (leq([s(nn1), z])) -> BOT -> 15 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 19 (mult([n, s(m), _l])) -> leq([n, _l]) -> 18 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 16 } Sat witness: Found: ((leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]), { nn1 -> s(s(z)) ; nn2 -> s(z) }) ------------------------------------------- Step 25, which took 0.021292 s (model generation: 0.020270, model checking: 0.001022): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_26, q_gen_27}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_26 (q_gen_26) -> q_gen_26 (q_gen_27) -> q_gen_26 (q_gen_27) -> q_gen_26 (q_gen_14) -> q_gen_26 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_24, q_gen_25, q_gen_29}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 () -> q_gen_12 (q_gen_29) -> q_gen_29 (q_gen_25) -> q_gen_29 (q_gen_24) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 () -> q_gen_11 (q_gen_29) -> q_gen_24 (q_gen_29) -> q_gen_24 (q_gen_25) -> q_gen_24 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 15 () -> leq([z, z]) -> 15 () -> mult([n, z, z]) -> 16 () -> plus([n, z, n]) -> 15 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 15 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 17 (leq([s(nn1), z])) -> BOT -> 16 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 19 (mult([n, s(m), _l])) -> leq([n, _l]) -> 18 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 19 } Sat witness: Found: ((plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]), { _a -> s(s(s(z))) ; mm -> s(z) ; n -> s(s(z)) }) ------------------------------------------- Step 26, which took 0.025261 s (model generation: 0.024479, model checking: 0.000782): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34, q_gen_43}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_27) -> q_gen_43 (q_gen_14) -> q_gen_43 (q_gen_27) -> q_gen_13 (q_gen_43) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_18 (q_gen_43) -> q_gen_18 (q_gen_14) -> q_gen_18 (q_gen_27) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 16 () -> leq([z, z]) -> 16 () -> mult([n, z, z]) -> 17 () -> plus([n, z, n]) -> 16 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 16 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 18 (leq([s(nn1), z])) -> BOT -> 17 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 22 (mult([n, s(m), _l])) -> leq([n, _l]) -> 19 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 20 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> s(z) ; _g -> s(s(z)) ; mm -> s(z) ; n -> s(z) }) ------------------------------------------- Step 27, which took 0.024561 s (model generation: 0.023789, model checking: 0.000772): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_26, q_gen_27}, Q_f={q_gen_13}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_26 (q_gen_26) -> q_gen_26 (q_gen_27) -> q_gen_26 (q_gen_27) -> q_gen_26 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_24, q_gen_25, q_gen_29}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 () -> q_gen_12 (q_gen_29) -> q_gen_29 (q_gen_25) -> q_gen_29 (q_gen_11) -> q_gen_11 (q_gen_24) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 () -> q_gen_11 (q_gen_29) -> q_gen_24 (q_gen_29) -> q_gen_24 (q_gen_25) -> q_gen_24 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 17 () -> leq([z, z]) -> 17 () -> mult([n, z, z]) -> 18 () -> plus([n, z, n]) -> 17 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 17 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 19 (leq([s(nn1), z])) -> BOT -> 18 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 25 (mult([n, s(m), _l])) -> leq([n, _l]) -> 20 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 21 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> z ; _g -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 28, which took 0.025891 s (model generation: 0.025431, model checking: 0.000460): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34, q_gen_45}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_27) -> q_gen_45 (q_gen_14) -> q_gen_45 (q_gen_45) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_18 (q_gen_27) -> q_gen_18 (q_gen_14) -> q_gen_18 (q_gen_45) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 18 () -> leq([z, z]) -> 18 () -> mult([n, z, z]) -> 19 () -> plus([n, z, n]) -> 18 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 18 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 20 (leq([s(nn1), z])) -> BOT -> 19 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 25 (mult([n, s(m), _l])) -> leq([n, _l]) -> 23 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 21 } Sat witness: Found: ((mult([n, s(m), _l])) -> leq([n, _l]), { _l -> s(s(s(z))) ; m -> z ; n -> s(s(s(s(z)))) }) ------------------------------------------- Step 29, which took 0.028878 s (model generation: 0.028018, model checking: 0.000860): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34, q_gen_50}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_14) -> q_gen_50 (q_gen_13) -> q_gen_13 (q_gen_50) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_27) -> q_gen_18 (q_gen_14) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 19 () -> leq([z, z]) -> 19 () -> mult([n, z, z]) -> 20 () -> plus([n, z, n]) -> 19 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 19 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 21 (leq([s(nn1), z])) -> BOT -> 20 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 28 (mult([n, s(m), _l])) -> leq([n, _l]) -> 24 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 22 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> s(s(z)) ; _g -> s(s(z)) ; mm -> z ; n -> s(s(z)) }) ------------------------------------------- Step 30, which took 0.033861 s (model generation: 0.033065, model checking: 0.000796): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34, q_gen_50}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_14) -> q_gen_50 (q_gen_50) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_18 (q_gen_14) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 (q_gen_27) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 20 () -> leq([z, z]) -> 20 () -> mult([n, z, z]) -> 21 () -> plus([n, z, n]) -> 20 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 20 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 22 (leq([s(nn1), z])) -> BOT -> 21 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 31 (mult([n, s(m), _l])) -> leq([n, _l]) -> 25 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 23 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> z ; _g -> s(s(z)) ; mm -> z ; n -> s(s(z)) }) ------------------------------------------- Step 31, which took 0.037123 s (model generation: 0.036196, model checking: 0.000927): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34, q_gen_43}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_43) -> q_gen_43 (q_gen_14) -> q_gen_43 (q_gen_27) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_18 (q_gen_14) -> q_gen_18 (q_gen_43) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 (q_gen_43) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 21 () -> leq([z, z]) -> 21 () -> mult([n, z, z]) -> 22 () -> plus([n, z, n]) -> 21 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 21 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 23 (leq([s(nn1), z])) -> BOT -> 22 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 34 (mult([n, s(m), _l])) -> leq([n, _l]) -> 26 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 24 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> s(z) ; _g -> s(s(z)) ; mm -> s(s(z)) ; n -> s(z) }) ------------------------------------------- Step 32, which took 0.045129 s (model generation: 0.043860, model checking: 0.001269): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_26, q_gen_27, q_gen_34, q_gen_43}, Q_f={q_gen_13, q_gen_26}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_43) -> q_gen_43 (q_gen_14) -> q_gen_43 (q_gen_26) -> q_gen_13 (q_gen_43) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_43) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_27) -> q_gen_26 (q_gen_27) -> q_gen_26 (q_gen_14) -> q_gen_26 () -> q_gen_26 (q_gen_13) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 22 () -> leq([z, z]) -> 22 () -> mult([n, z, z]) -> 23 () -> plus([n, z, n]) -> 22 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 22 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 24 (leq([s(nn1), z])) -> BOT -> 23 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 37 (mult([n, s(m), _l])) -> leq([n, _l]) -> 27 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 25 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> s(z) ; _g -> s(z) ; mm -> s(z) ; n -> s(z) }) ------------------------------------------- Step 33, which took 0.039353 s (model generation: 0.038103, model checking: 0.001250): Model: |_ { leq -> {{{ Q={q_gen_10, q_gen_15, q_gen_35}, Q_f={q_gen_15}, Delta= { (q_gen_10) -> q_gen_10 () -> q_gen_10 (q_gen_15) -> q_gen_15 (q_gen_10) -> q_gen_15 () -> q_gen_15 (q_gen_35) -> q_gen_35 (q_gen_10) -> q_gen_35 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_13, q_gen_14, q_gen_18, q_gen_27, q_gen_34, q_gen_43}, Q_f={q_gen_13, q_gen_18}, Delta= { (q_gen_14) -> q_gen_14 () -> q_gen_14 (q_gen_27) -> q_gen_27 (q_gen_14) -> q_gen_27 () -> q_gen_27 (q_gen_43) -> q_gen_43 (q_gen_14) -> q_gen_43 (q_gen_27) -> q_gen_13 (q_gen_27) -> q_gen_13 (q_gen_43) -> q_gen_13 (q_gen_14) -> q_gen_13 (q_gen_14) -> q_gen_13 () -> q_gen_13 (q_gen_13) -> q_gen_18 (q_gen_43) -> q_gen_18 (q_gen_14) -> q_gen_18 (q_gen_18) -> q_gen_34 (q_gen_34) -> q_gen_34 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_11, q_gen_12, q_gen_25}, Q_f={q_gen_11}, Delta= { (q_gen_25) -> q_gen_25 () -> q_gen_25 (q_gen_12) -> q_gen_12 (q_gen_25) -> q_gen_12 () -> q_gen_12 (q_gen_11) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_12) -> q_gen_11 (q_gen_25) -> q_gen_11 () -> q_gen_11 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 23 () -> leq([z, z]) -> 23 () -> mult([n, z, z]) -> 24 () -> plus([n, z, n]) -> 23 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 23 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 25 (leq([s(nn1), z])) -> BOT -> 24 (mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]) -> 40 (mult([n, s(m), _l])) -> leq([n, _l]) -> 28 (plus([n, mm, _a])) -> plus([n, s(mm), s(_a)]) -> 26 } Sat witness: Found: ((mult([n, mm, _f]) /\ plus([n, _f, _g])) -> mult([n, s(mm), _g]), { _f -> s(s(z)) ; _g -> s(s(z)) ; mm -> s(z) ; n -> s(s(z)) }) Total time: 0.653942 Reason for stopping: Proved