Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)])} (plus([_na, _oa, _pa]) /\ plus([_na, _oa, _qa])) -> eq_nat([_pa, _qa]) ) (mult, F: {() -> mult([n, z, z]) (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa])} (mult([_ta, _ua, _va]) /\ mult([_ta, _ua, _wa])) -> eq_nat([_va, _wa]) ) (leq, P: {() -> leq([z, s(nn2)]) () -> leq([z, z]) (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) (leq([s(nn1), z])) -> BOT} ) } properties: {(leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa])} over-approximation: {mult, plus} under-approximation: {} Clause system for inference is: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 0 () -> plus([n, z, n]) -> 0 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 0 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 0 (leq([s(nn1), z])) -> BOT -> 0 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 0 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 0 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 0 } Solving took 0.654644 seconds. Proved Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307, q_gen_319}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_300) -> q_gen_300 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_319) -> q_gen_319 (q_gen_287) -> q_gen_319 (q_gen_280) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_319) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_319) -> q_gen_291 (q_gen_287) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.007758 s (model generation: 0.007470, model checking: 0.000288): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 0 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 1 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 1 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.012367 s (model generation: 0.012214, model checking: 0.000153): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279}, Q_f={q_gen_279}, Delta= { () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 1 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 1 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 1 } Sat witness: Found: (() -> mult([n, z, z]), { n -> z }) ------------------------------------------- Step 2, which took 0.009559 s (model generation: 0.009507, model checking: 0.000052): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280}, Q_f={q_gen_280}, Delta= { () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279}, Q_f={q_gen_279}, Delta= { () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 1 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 1 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 1 } Sat witness: Found: (() -> leq([z, z]), { }) ------------------------------------------- Step 3, which took 0.008227 s (model generation: 0.008158, model checking: 0.000069): Model: |_ { leq -> {{{ Q={q_gen_281}, Q_f={q_gen_281}, Delta= { () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280}, Q_f={q_gen_280}, Delta= { () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279}, Q_f={q_gen_279}, Delta= { () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 1 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 1 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 1 } Sat witness: Found: (() -> leq([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 4, which took 0.007666 s (model generation: 0.007519, model checking: 0.000147): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { () -> q_gen_283 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280}, Q_f={q_gen_280}, Delta= { () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279}, Q_f={q_gen_279}, Delta= { () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 1 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 1 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 4 } Sat witness: Found: ((plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]), { _ma -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 5, which took 0.007852 s (model generation: 0.007751, model checking: 0.000101): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { () -> q_gen_283 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280}, Q_f={q_gen_280}, Delta= { () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285}, Q_f={q_gen_279}, Delta= { () -> q_gen_285 (q_gen_285) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 1 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 4 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 4 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> z ; _sa -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 6, which took 0.009287 s (model generation: 0.008619, model checking: 0.000668): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { () -> q_gen_283 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287}, Q_f={q_gen_280}, Delta= { () -> q_gen_287 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285}, Q_f={q_gen_279}, Delta= { () -> q_gen_285 (q_gen_285) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 2 (leq([s(nn1), z])) -> BOT -> 2 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 2 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 4 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 4 } Sat witness: Found: ((leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]), { nn1 -> z ; nn2 -> z }) ------------------------------------------- Step 7, which took 0.008299 s (model generation: 0.008079, model checking: 0.000220): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287}, Q_f={q_gen_280}, Delta= { () -> q_gen_287 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285}, Q_f={q_gen_279}, Delta= { () -> q_gen_285 (q_gen_285) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 3 (leq([s(nn1), z])) -> BOT -> 3 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 3 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 4 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 8, which took 0.009115 s (model generation: 0.008890, model checking: 0.000225): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287}, Q_f={q_gen_280}, Delta= { () -> q_gen_287 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285}, Q_f={q_gen_279}, Delta= { (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 4 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 4 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 4 } Sat witness: Found: (() -> mult([n, z, z]), { n -> s(s(z)) }) ------------------------------------------- Step 9, which took 0.011080 s (model generation: 0.010981, model checking: 0.000099): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285}, Q_f={q_gen_279}, Delta= { (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 4 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 4 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 4 } Sat witness: Found: (() -> leq([z, s(nn2)]), { nn2 -> s(z) }) ------------------------------------------- Step 10, which took 0.008883 s (model generation: 0.008733, model checking: 0.000150): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285}, Q_f={q_gen_279}, Delta= { (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 4 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 4 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 7 } Sat witness: Found: ((plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]), { _ma -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 11, which took 0.010265 s (model generation: 0.010116, model checking: 0.000149): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 4 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 7 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 7 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> z ; _sa -> s(z) ; mm -> z ; n -> z }) ------------------------------------------- Step 12, which took 0.010903 s (model generation: 0.010414, model checking: 0.000489): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 5 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 5 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 5 (leq([s(nn1), z])) -> BOT -> 5 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 5 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 7 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 10 } Sat witness: Found: ((plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]), { _ma -> s(z) ; mm -> z ; n -> z }) ------------------------------------------- Step 13, which took 0.011211 s (model generation: 0.010834, model checking: 0.000377): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 6 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 6 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 6 (leq([s(nn1), z])) -> BOT -> 6 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 6 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 10 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 10 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> z ; _sa -> s(s(z)) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 14, which took 0.012848 s (model generation: 0.012736, model checking: 0.000112): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_280) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 6 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 6 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 6 (leq([s(nn1), z])) -> BOT -> 6 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 9 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 10 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 10 } Sat witness: Found: ((leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]), { _xa -> s(z) ; m -> s(z) ; n -> s(s(z)) }) ------------------------------------------- Step 15, which took 0.013147 s (model generation: 0.013113, model checking: 0.000034): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_280) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 6 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 6 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 6 (leq([s(nn1), z])) -> BOT -> 9 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 9 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 10 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 10 } Sat witness: Found: ((leq([s(nn1), z])) -> BOT, { nn1 -> z }) ------------------------------------------- Step 16, which took 0.014298 s (model generation: 0.014207, model checking: 0.000091): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_309}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_309) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_283) -> q_gen_309 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_280) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 7 () -> leq([z, z]) -> 6 () -> mult([n, z, z]) -> 7 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 6 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 9 (leq([s(nn1), z])) -> BOT -> 9 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 9 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 10 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 10 } Sat witness: Found: ((leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]), { nn1 -> s(z) ; nn2 -> z }) ------------------------------------------- Step 17, which took 0.013985 s (model generation: 0.013539, model checking: 0.000446): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300, q_gen_306}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_306) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_306 (q_gen_287) -> q_gen_306 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 8 () -> leq([z, z]) -> 7 () -> mult([n, z, z]) -> 8 () -> plus([n, z, n]) -> 8 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 7 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 9 (leq([s(nn1), z])) -> BOT -> 9 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 12 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 10 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 10 } Sat witness: Found: ((leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]), { _xa -> s(s(z)) ; m -> s(s(z)) ; n -> s(s(s(z))) }) ------------------------------------------- Step 18, which took 0.014924 s (model generation: 0.014089, model checking: 0.000835): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_280) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_287) -> q_gen_291 (q_gen_300) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 9 () -> leq([z, z]) -> 8 () -> mult([n, z, z]) -> 9 () -> plus([n, z, n]) -> 9 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 8 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 10 (leq([s(nn1), z])) -> BOT -> 10 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 12 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 10 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 13 } Sat witness: Found: ((plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]), { _ma -> s(s(z)) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 19, which took 0.016454 s (model generation: 0.016180, model checking: 0.000274): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_292, q_gen_300, q_gen_303}, Q_f={q_gen_280}, Delta= { () -> q_gen_287 (q_gen_287) -> q_gen_292 () -> q_gen_300 (q_gen_292) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_303 (q_gen_303) -> q_gen_303 (q_gen_287) -> q_gen_303 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 9 () -> leq([z, z]) -> 9 () -> mult([n, z, z]) -> 12 () -> plus([n, z, n]) -> 10 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 9 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 10 (leq([s(nn1), z])) -> BOT -> 10 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 12 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 10 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 13 } Sat witness: Found: (() -> mult([n, z, z]), { n -> s(z) }) ------------------------------------------- Step 20, which took 0.017490 s (model generation: 0.017204, model checking: 0.000286): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300, q_gen_305, q_gen_307}, Q_f={q_gen_280, q_gen_305}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_305) -> q_gen_305 (q_gen_287) -> q_gen_305 (q_gen_280) -> q_gen_307 (q_gen_307) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 10 () -> leq([z, z]) -> 10 () -> mult([n, z, z]) -> 12 () -> plus([n, z, n]) -> 10 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 10 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 10 (leq([s(nn1), z])) -> BOT -> 10 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 12 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 13 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 13 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> s(s(z)) ; _sa -> s(s(z)) ; mm -> s(z) ; n -> s(z) }) ------------------------------------------- Step 21, which took 0.018275 s (model generation: 0.017305, model checking: 0.000970): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_299, q_gen_300, q_gen_307}, Q_f={q_gen_280, q_gen_299}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 () -> q_gen_300 (q_gen_299) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_300) -> q_gen_299 (q_gen_287) -> q_gen_299 (q_gen_280) -> q_gen_307 (q_gen_307) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 11 () -> leq([z, z]) -> 11 () -> mult([n, z, z]) -> 13 () -> plus([n, z, n]) -> 11 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 11 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 11 (leq([s(nn1), z])) -> BOT -> 11 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 13 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 16 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 14 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> s(z) ; _sa -> s(z) ; mm -> s(z) ; n -> z }) ------------------------------------------- Step 22, which took 0.018825 s (model generation: 0.017786, model checking: 0.001039): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_280) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_287) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 12 () -> leq([z, z]) -> 12 () -> mult([n, z, z]) -> 14 () -> plus([n, z, n]) -> 12 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 12 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 12 (leq([s(nn1), z])) -> BOT -> 12 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 14 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 19 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 15 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> z ; _sa -> s(s(s(z))) ; mm -> z ; n -> s(s(z)) }) ------------------------------------------- Step 23, which took 0.021745 s (model generation: 0.021369, model checking: 0.000376): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_300) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_291 (q_gen_287) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 13 () -> leq([z, z]) -> 13 () -> mult([n, z, z]) -> 14 () -> plus([n, z, n]) -> 13 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 13 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 13 (leq([s(nn1), z])) -> BOT -> 13 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 17 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 19 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 15 } Sat witness: Found: ((leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]), { _xa -> s(s(z)) ; m -> s(z) ; n -> s(s(s(z))) }) ------------------------------------------- Step 24, which took 0.022507 s (model generation: 0.022340, model checking: 0.000167): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308, q_gen_309}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_308) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_309) -> q_gen_308 (q_gen_283) -> q_gen_309 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_306}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_291 (q_gen_306) -> q_gen_291 (q_gen_287) -> q_gen_291 (q_gen_291) -> q_gen_306 (q_gen_300) -> q_gen_306 (q_gen_287) -> q_gen_306 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 13 () -> leq([z, z]) -> 13 () -> mult([n, z, z]) -> 14 () -> plus([n, z, n]) -> 13 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 13 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 16 (leq([s(nn1), z])) -> BOT -> 14 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 17 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 19 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 15 } Sat witness: Found: ((leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]), { nn1 -> s(s(z)) ; nn2 -> s(z) }) ------------------------------------------- Step 25, which took 0.023777 s (model generation: 0.022612, model checking: 0.001165): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307, q_gen_319}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_287) -> q_gen_319 (q_gen_300) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_291 (q_gen_287) -> q_gen_291 (q_gen_319) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 (q_gen_319) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 14 () -> leq([z, z]) -> 14 () -> mult([n, z, z]) -> 15 () -> plus([n, z, n]) -> 14 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 14 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 17 (leq([s(nn1), z])) -> BOT -> 15 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 18 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 22 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 16 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> s(z) ; _sa -> s(s(z)) ; mm -> s(s(z)) ; n -> s(z) }) ------------------------------------------- Step 26, which took 0.026357 s (model generation: 0.025503, model checking: 0.000854): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_286, q_gen_287, q_gen_300, q_gen_307, q_gen_319}, Q_f={q_gen_280, q_gen_286}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_287) -> q_gen_319 (q_gen_300) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_319) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_286 (q_gen_287) -> q_gen_286 (q_gen_287) -> q_gen_286 (q_gen_286) -> q_gen_307 (q_gen_307) -> q_gen_307 (q_gen_319) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 15 () -> leq([z, z]) -> 15 () -> mult([n, z, z]) -> 16 () -> plus([n, z, n]) -> 15 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 15 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 18 (leq([s(nn1), z])) -> BOT -> 16 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 19 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 25 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 17 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> s(z) ; _sa -> s(z) ; mm -> s(z) ; n -> s(z) }) ------------------------------------------- Step 27, which took 0.035982 s (model generation: 0.034796, model checking: 0.001186): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307, q_gen_319}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_287) -> q_gen_319 (q_gen_300) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_319) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_291 (q_gen_287) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 (q_gen_319) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 16 () -> leq([z, z]) -> 16 () -> mult([n, z, z]) -> 17 () -> plus([n, z, n]) -> 16 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 16 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 19 (leq([s(nn1), z])) -> BOT -> 17 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 20 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 28 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 18 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> s(s(z)) ; _sa -> s(s(z)) ; mm -> s(z) ; n -> s(s(z)) }) ------------------------------------------- Step 28, which took 0.035628 s (model generation: 0.034666, model checking: 0.000962): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_299, q_gen_300}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_299 (q_gen_299) -> q_gen_299 (q_gen_300) -> q_gen_299 (q_gen_300) -> q_gen_299 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_297, q_gen_298, q_gen_302}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_302) -> q_gen_302 (q_gen_298) -> q_gen_302 (q_gen_297) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 () -> q_gen_279 (q_gen_279) -> q_gen_297 (q_gen_302) -> q_gen_297 (q_gen_302) -> q_gen_297 (q_gen_298) -> q_gen_297 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 17 () -> leq([z, z]) -> 17 () -> mult([n, z, z]) -> 18 () -> plus([n, z, n]) -> 17 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 17 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 19 (leq([s(nn1), z])) -> BOT -> 18 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 20 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 28 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 21 } Sat witness: Found: ((plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]), { _ma -> s(s(s(z))) ; mm -> s(z) ; n -> s(s(z)) }) ------------------------------------------- Step 29, which took 0.036609 s (model generation: 0.035455, model checking: 0.001154): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300, q_gen_305}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_305 (q_gen_305) -> q_gen_305 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_297, q_gen_298, q_gen_302}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_302) -> q_gen_302 (q_gen_298) -> q_gen_302 (q_gen_279) -> q_gen_279 (q_gen_297) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 () -> q_gen_279 (q_gen_302) -> q_gen_297 (q_gen_302) -> q_gen_297 (q_gen_298) -> q_gen_297 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 18 () -> leq([z, z]) -> 18 () -> mult([n, z, z]) -> 19 () -> plus([n, z, n]) -> 18 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 18 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 20 (leq([s(nn1), z])) -> BOT -> 19 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 21 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 31 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 22 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> s(z) ; _sa -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 30, which took 0.037762 s (model generation: 0.036692, model checking: 0.001070): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_300, q_gen_305}, Q_f={q_gen_280}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_287) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_280) -> q_gen_305 (q_gen_305) -> q_gen_305 (q_gen_300) -> q_gen_305 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_297, q_gen_298, q_gen_302}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 () -> q_gen_285 (q_gen_302) -> q_gen_302 (q_gen_298) -> q_gen_302 (q_gen_279) -> q_gen_279 (q_gen_297) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 () -> q_gen_279 (q_gen_302) -> q_gen_297 (q_gen_302) -> q_gen_297 (q_gen_298) -> q_gen_297 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 19 () -> leq([z, z]) -> 19 () -> mult([n, z, z]) -> 20 () -> plus([n, z, n]) -> 19 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 19 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 21 (leq([s(nn1), z])) -> BOT -> 20 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 22 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 34 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 23 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> z ; _sa -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 31, which took 0.039253 s (model generation: 0.037907, model checking: 0.001346): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307, q_gen_319}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_287) -> q_gen_319 (q_gen_280) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_319) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_287) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 (q_gen_319) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 20 () -> leq([z, z]) -> 20 () -> mult([n, z, z]) -> 21 () -> plus([n, z, n]) -> 20 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 20 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 22 (leq([s(nn1), z])) -> BOT -> 21 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 23 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 37 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 24 } Sat witness: Found: ((mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]), { _ra -> z ; _sa -> s(s(s(z))) ; mm -> z ; n -> s(s(s(z))) }) ------------------------------------------- Step 32, which took 0.046211 s (model generation: 0.045650, model checking: 0.000561): Model: |_ { leq -> {{{ Q={q_gen_281, q_gen_283, q_gen_308}, Q_f={q_gen_281}, Delta= { (q_gen_283) -> q_gen_283 () -> q_gen_283 (q_gen_281) -> q_gen_281 (q_gen_283) -> q_gen_281 () -> q_gen_281 (q_gen_308) -> q_gen_308 (q_gen_283) -> q_gen_308 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_280, q_gen_287, q_gen_291, q_gen_300, q_gen_307, q_gen_324}, Q_f={q_gen_280, q_gen_291}, Delta= { (q_gen_287) -> q_gen_287 () -> q_gen_287 (q_gen_287) -> q_gen_300 () -> q_gen_300 (q_gen_300) -> q_gen_324 (q_gen_287) -> q_gen_324 (q_gen_280) -> q_gen_280 (q_gen_324) -> q_gen_280 (q_gen_300) -> q_gen_280 (q_gen_287) -> q_gen_280 (q_gen_287) -> q_gen_280 () -> q_gen_280 (q_gen_300) -> q_gen_291 (q_gen_287) -> q_gen_291 (q_gen_291) -> q_gen_307 (q_gen_307) -> q_gen_307 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_279, q_gen_285, q_gen_298}, Q_f={q_gen_279}, Delta= { (q_gen_298) -> q_gen_298 () -> q_gen_298 (q_gen_285) -> q_gen_285 (q_gen_298) -> q_gen_285 () -> q_gen_285 (q_gen_279) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_285) -> q_gen_279 (q_gen_298) -> q_gen_279 () -> q_gen_279 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 21 () -> leq([z, z]) -> 21 () -> mult([n, z, z]) -> 22 () -> plus([n, z, n]) -> 21 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 21 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 23 (leq([s(nn1), z])) -> BOT -> 22 (leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]) -> 26 (mult([n, mm, _ra]) /\ plus([n, _ra, _sa])) -> mult([n, s(mm), _sa]) -> 37 (plus([n, mm, _ma])) -> plus([n, s(mm), s(_ma)]) -> 24 } Sat witness: Found: ((leq([s(z), m]) /\ mult([n, m, _xa])) -> leq([n, _xa]), { _xa -> s(s(s(z))) ; m -> s(z) ; n -> s(s(s(s(z)))) }) Total time: 0.654644 Reason for stopping: Proved