Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (leq, P: {() -> leq([z, n2]) (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) (leq([s(nn1), z])) -> BOT} ) } properties: {(leq([m, n])) -> leq([m, s(n)])} over-approximation: {} under-approximation: {} Clause system for inference is: { () -> leq([z, n2]) -> 0 (leq([m, n])) -> leq([m, s(n)]) -> 0 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 0 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 0 (leq([s(nn1), z])) -> BOT -> 0 } Solving took 0.038719 seconds. Proved Model: |_ { leq -> {{{ Q={q_gen_348, q_gen_351}, Q_f={q_gen_348}, Delta= { (q_gen_351) -> q_gen_351 () -> q_gen_351 (q_gen_348) -> q_gen_348 (q_gen_351) -> q_gen_348 () -> q_gen_348 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.007806 s (model generation: 0.007707, model checking: 0.000099): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, n2]) -> 3 (leq([m, n])) -> leq([m, s(n)]) -> 1 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 } Sat witness: Found: (() -> leq([z, n2]), { n2 -> z }) ------------------------------------------- Step 1, which took 0.007304 s (model generation: 0.007212, model checking: 0.000092): Model: |_ { leq -> {{{ Q={q_gen_348}, Q_f={q_gen_348}, Delta= { () -> q_gen_348 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, n2]) -> 3 (leq([m, n])) -> leq([m, s(n)]) -> 1 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 2 (leq([s(nn1), z])) -> BOT -> 2 } Sat witness: Found: ((leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]), { nn1 -> z ; nn2 -> z }) ------------------------------------------- Step 2, which took 0.007145 s (model generation: 0.007072, model checking: 0.000073): Model: |_ { leq -> {{{ Q={q_gen_348}, Q_f={q_gen_348}, Delta= { (q_gen_348) -> q_gen_348 () -> q_gen_348 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, n2]) -> 3 (leq([m, n])) -> leq([m, s(n)]) -> 4 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 2 (leq([s(nn1), z])) -> BOT -> 2 } Sat witness: Found: ((leq([m, n])) -> leq([m, s(n)]), { m -> z ; n -> z }) ------------------------------------------- Step 3, which took 0.008018 s (model generation: 0.007398, model checking: 0.000620): Model: |_ { leq -> {{{ Q={q_gen_348, q_gen_351}, Q_f={q_gen_348}, Delta= { () -> q_gen_351 (q_gen_348) -> q_gen_348 (q_gen_351) -> q_gen_348 () -> q_gen_348 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, n2]) -> 6 (leq([m, n])) -> leq([m, s(n)]) -> 4 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 3 (leq([s(nn1), z])) -> BOT -> 3 } Sat witness: Found: (() -> leq([z, n2]), { n2 -> s(s(z)) }) Total time: 0.038719 Reason for stopping: Proved