Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)])} (plus([_rga, _sga, _tga]) /\ plus([_rga, _sga, _uga])) -> eq_nat([_tga, _uga]) ) (le, P: {() -> le([z, s(nn2)]) (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) (le([s(nn1), z])) -> BOT (le([z, z])) -> BOT} ) } properties: {(plus([m, i, _vga])) -> le([i, s(_vga)])} over-approximation: {plus} under-approximation: {le} Clause system for inference is: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 0 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 0 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 0 (le([s(nn1), z])) -> BOT -> 0 (le([z, z])) -> BOT -> 0 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 0 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 0 } Solving took 0.185419 seconds. Proved Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { (q_gen_8620) -> q_gen_8620 () -> q_gen_8620 (q_gen_8619) -> q_gen_8619 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618, q_gen_8622, q_gen_8631}, Q_f={q_gen_8618}, Delta= { (q_gen_8631) -> q_gen_8631 () -> q_gen_8631 (q_gen_8622) -> q_gen_8622 (q_gen_8631) -> q_gen_8622 () -> q_gen_8622 (q_gen_8618) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 (q_gen_8631) -> q_gen_8618 () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.016195 s (model generation: 0.015754, model checking: 0.000441): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 0 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 1 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.015544 s (model generation: 0.015423, model checking: 0.000121): Model: |_ { le -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618}, Q_f={q_gen_8618}, Delta= { () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 1 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 1 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 2, which took 0.016741 s (model generation: 0.016556, model checking: 0.000185): Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { () -> q_gen_8620 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618}, Q_f={q_gen_8618}, Delta= { () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 1 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 4 } Sat witness: Found: ((plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]), { _qga -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 3, which took 0.017470 s (model generation: 0.015140, model checking: 0.002330): Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { () -> q_gen_8620 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618, q_gen_8622}, Q_f={q_gen_8618}, Delta= { () -> q_gen_8622 (q_gen_8622) -> q_gen_8618 () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 3 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 1 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 1 (le([s(nn1), z])) -> BOT -> 1 (le([z, z])) -> BOT -> 1 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 4 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 4 } Sat witness: Found: ((plus([m, i, _vga])) -> le([i, s(_vga)]), { _vga -> s(z) ; i -> s(z) ; m -> z }) ------------------------------------------- Step 4, which took 0.016962 s (model generation: 0.016435, model checking: 0.000527): Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { () -> q_gen_8620 (q_gen_8619) -> q_gen_8619 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618, q_gen_8622}, Q_f={q_gen_8618}, Delta= { () -> q_gen_8622 (q_gen_8622) -> q_gen_8618 () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 3 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 2 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 2 (le([s(nn1), z])) -> BOT -> 2 (le([z, z])) -> BOT -> 2 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 4 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 5, which took 0.017335 s (model generation: 0.016903, model checking: 0.000432): Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { () -> q_gen_8620 (q_gen_8619) -> q_gen_8619 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618, q_gen_8622}, Q_f={q_gen_8618}, Delta= { (q_gen_8622) -> q_gen_8622 () -> q_gen_8622 (q_gen_8622) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 3 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 3 (le([s(nn1), z])) -> BOT -> 3 (le([z, z])) -> BOT -> 3 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 4 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 4 } Sat witness: Found: (() -> le([z, s(nn2)]), { nn2 -> s(z) }) ------------------------------------------- Step 6, which took 0.018851 s (model generation: 0.016763, model checking: 0.002088): Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { (q_gen_8620) -> q_gen_8620 () -> q_gen_8620 (q_gen_8619) -> q_gen_8619 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618, q_gen_8622}, Q_f={q_gen_8618}, Delta= { (q_gen_8622) -> q_gen_8622 () -> q_gen_8622 (q_gen_8622) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 6 () -> plus([n, z, n]) -> 6 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 4 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 4 (le([s(nn1), z])) -> BOT -> 4 (le([z, z])) -> BOT -> 4 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 4 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 7 } Sat witness: Found: ((plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]), { _qga -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 7, which took 0.019965 s (model generation: 0.018971, model checking: 0.000994): Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { (q_gen_8620) -> q_gen_8620 () -> q_gen_8620 (q_gen_8619) -> q_gen_8619 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618, q_gen_8622, q_gen_8631}, Q_f={q_gen_8618}, Delta= { () -> q_gen_8631 (q_gen_8622) -> q_gen_8622 () -> q_gen_8622 (q_gen_8618) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 (q_gen_8631) -> q_gen_8618 () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 7 () -> plus([n, z, n]) -> 7 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 5 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 5 (le([s(nn1), z])) -> BOT -> 5 (le([z, z])) -> BOT -> 5 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 5 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 10 } Sat witness: Found: ((plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]), { _qga -> s(z) ; mm -> z ; n -> z }) ------------------------------------------- Step 8, which took 0.020866 s (model generation: 0.019789, model checking: 0.001077): Model: |_ { le -> {{{ Q={q_gen_8619, q_gen_8620}, Q_f={q_gen_8619}, Delta= { (q_gen_8620) -> q_gen_8620 () -> q_gen_8620 (q_gen_8619) -> q_gen_8619 (q_gen_8620) -> q_gen_8619 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8618, q_gen_8622, q_gen_8631}, Q_f={q_gen_8618}, Delta= { () -> q_gen_8631 (q_gen_8622) -> q_gen_8622 (q_gen_8631) -> q_gen_8622 () -> q_gen_8622 (q_gen_8618) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 (q_gen_8622) -> q_gen_8618 (q_gen_8631) -> q_gen_8618 () -> q_gen_8618 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> le([z, s(nn2)]) -> 8 () -> plus([n, z, n]) -> 8 (le([nn1, nn2])) -> le([s(nn1), s(nn2)]) -> 6 (le([s(nn1), s(nn2)])) -> le([nn1, nn2]) -> 6 (le([s(nn1), z])) -> BOT -> 6 (le([z, z])) -> BOT -> 6 (plus([m, i, _vga])) -> le([i, s(_vga)]) -> 6 (plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]) -> 13 } Sat witness: Found: ((plus([n, mm, _qga])) -> plus([n, s(mm), s(_qga)]), { _qga -> s(s(z)) ; mm -> z ; n -> s(z) }) Total time: 0.185419 Reason for stopping: Proved