Solving ../../benchmarks/false/mult_leq.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: 60s Convolution: left Learning problem is: env: { nat -> {s, z} } definition: { (leq, P: {() -> leq([z, s(nn2)]) () -> leq([z, z]) (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) (leq([s(nn1), z])) -> BOT} ) (plus, F: {() -> plus([n, z, n]) (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)])} (plus([_xga, _yga, _aha]) /\ plus([_xga, _yga, _zga])) -> eq_nat([_zga, _aha]) ) (mult, F: {() -> mult([n, z, z]) (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha])} (mult([_dha, _eha, _fha]) /\ mult([_dha, _eha, _gha])) -> eq_nat([_fha, _gha]) ) } properties: {(mult([n, m, _hha])) -> leq([n, _hha])} over-approximation: {mult, plus} under-approximation: {leq} Clause system for inference is: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 0 () -> plus([n, z, n]) -> 0 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 0 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 0 (leq([s(nn1), z])) -> BOT -> 0 (mult([n, m, _hha])) -> leq([n, _hha]) -> 0 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 0 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 0 } Solving took 0.354548 seconds. Disproved ------------------- STEPS: ------------------------------------------- Step 0, which took 0.017395 s (model generation: 0.014463, model checking: 0.002932): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 0 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, m, _hha])) -> leq([n, _hha]) -> 1 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 1 } Sat witness: Found: (() -> plus([n, z, n]), { n -> z }) ------------------------------------------- Step 1, which took 0.014615 s (model generation: 0.014444, model checking: 0.000171): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 0 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, m, _hha])) -> leq([n, _hha]) -> 1 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 1 } Sat witness: Found: (() -> mult([n, z, z]), { n -> z }) ------------------------------------------- Step 2, which took 0.015885 s (model generation: 0.015797, model checking: 0.000088): Model: |_ { leq -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 0 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, m, _hha])) -> leq([n, _hha]) -> 1 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 1 } Sat witness: Found: (() -> leq([z, z]), { }) ------------------------------------------- Step 3, which took 0.015112 s (model generation: 0.014983, model checking: 0.000129): Model: |_ { leq -> {{{ Q={q_gen_8643}, Q_f={q_gen_8643}, Delta= { () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, m, _hha])) -> leq([n, _hha]) -> 1 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 1 } Sat witness: Found: (() -> leq([z, s(nn2)]), { nn2 -> z }) ------------------------------------------- Step 4, which took 0.075955 s (model generation: 0.017198, model checking: 0.058757): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { () -> q_gen_8645 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, m, _hha])) -> leq([n, _hha]) -> 1 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 1 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: ((plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]), { _wga -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 5, which took 0.016469 s (model generation: 0.016262, model checking: 0.000207): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { () -> q_gen_8645 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8647 (q_gen_8647) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 1 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 1 (leq([s(nn1), z])) -> BOT -> 1 (mult([n, m, _hha])) -> leq([n, _hha]) -> 1 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: ((mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]), { _bha -> z ; _cha -> z ; mm -> z ; n -> z }) ------------------------------------------- Step 6, which took 0.017422 s (model generation: 0.017125, model checking: 0.000297): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { () -> q_gen_8645 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8649 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8647 (q_gen_8647) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 3 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 2 (leq([s(nn1), z])) -> BOT -> 2 (mult([n, m, _hha])) -> leq([n, _hha]) -> 2 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: ((leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]), { nn1 -> z ; nn2 -> z }) ------------------------------------------- Step 7, which took 0.017285 s (model generation: 0.016823, model checking: 0.000462): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8649 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8647 (q_gen_8647) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 3 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 3 (leq([s(nn1), z])) -> BOT -> 3 (mult([n, m, _hha])) -> leq([n, _hha]) -> 3 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: (() -> plus([n, z, n]), { n -> s(s(z)) }) ------------------------------------------- Step 8, which took 0.018205 s (model generation: 0.017731, model checking: 0.000474): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8649 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647}, Q_f={q_gen_8641}, Delta= { (q_gen_8647) -> q_gen_8647 () -> q_gen_8647 (q_gen_8647) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 3 () -> leq([z, z]) -> 3 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, m, _hha])) -> leq([n, _hha]) -> 4 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: (() -> mult([n, z, z]), { n -> s(s(z)) }) ------------------------------------------- Step 9, which took 0.018772 s (model generation: 0.018576, model checking: 0.000196): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649}, Q_f={q_gen_8642}, Delta= { (q_gen_8649) -> q_gen_8649 () -> q_gen_8649 (q_gen_8649) -> q_gen_8642 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647}, Q_f={q_gen_8641}, Delta= { (q_gen_8647) -> q_gen_8647 () -> q_gen_8647 (q_gen_8647) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, m, _hha])) -> leq([n, _hha]) -> 4 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 4 } Sat witness: Found: (() -> leq([z, s(nn2)]), { nn2 -> s(z) }) ------------------------------------------- Step 10, which took 0.018789 s (model generation: 0.018466, model checking: 0.000323): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { (q_gen_8645) -> q_gen_8645 () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649}, Q_f={q_gen_8642}, Delta= { (q_gen_8649) -> q_gen_8649 () -> q_gen_8649 (q_gen_8649) -> q_gen_8642 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647}, Q_f={q_gen_8641}, Delta= { (q_gen_8647) -> q_gen_8647 () -> q_gen_8647 (q_gen_8647) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, m, _hha])) -> leq([n, _hha]) -> 4 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 4 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: ((plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]), { _wga -> s(z) ; mm -> z ; n -> s(z) }) ------------------------------------------- Step 11, which took 0.021317 s (model generation: 0.021021, model checking: 0.000296): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { (q_gen_8645) -> q_gen_8645 () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649}, Q_f={q_gen_8642}, Delta= { (q_gen_8649) -> q_gen_8649 () -> q_gen_8649 (q_gen_8649) -> q_gen_8642 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647, q_gen_8660}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8660 (q_gen_8647) -> q_gen_8647 () -> q_gen_8647 (q_gen_8641) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8660) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, m, _hha])) -> leq([n, _hha]) -> 4 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 7 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: ((mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]), { _bha -> z ; _cha -> s(z) ; mm -> z ; n -> z }) ------------------------------------------- Step 12, which took 0.021902 s (model generation: 0.021738, model checking: 0.000164): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { (q_gen_8645) -> q_gen_8645 () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649, q_gen_8662}, Q_f={q_gen_8642}, Delta= { (q_gen_8649) -> q_gen_8649 () -> q_gen_8649 () -> q_gen_8662 (q_gen_8649) -> q_gen_8642 (q_gen_8662) -> q_gen_8642 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647, q_gen_8660}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8660 (q_gen_8647) -> q_gen_8647 () -> q_gen_8647 (q_gen_8641) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8660) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 4 (mult([n, m, _hha])) -> leq([n, _hha]) -> 7 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 7 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: ((mult([n, m, _hha])) -> leq([n, _hha]), { _hha -> z ; m -> z ; n -> s(z) }) ------------------------------------------- Step 13, which took 0.021564 s (model generation: 0.021503, model checking: 0.000061): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645}, Q_f={q_gen_8643}, Delta= { (q_gen_8645) -> q_gen_8645 () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649, q_gen_8662}, Q_f={q_gen_8642}, Delta= { (q_gen_8649) -> q_gen_8649 () -> q_gen_8649 () -> q_gen_8662 (q_gen_8649) -> q_gen_8642 (q_gen_8662) -> q_gen_8642 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647, q_gen_8660}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8660 (q_gen_8647) -> q_gen_8647 () -> q_gen_8647 (q_gen_8641) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8660) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 4 () -> mult([n, z, z]) -> 6 () -> plus([n, z, n]) -> 6 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 4 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 4 (leq([s(nn1), z])) -> BOT -> 7 (mult([n, m, _hha])) -> leq([n, _hha]) -> 7 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 7 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: ((leq([s(nn1), z])) -> BOT, { nn1 -> z }) ------------------------------------------- Step 14, which took 0.023283 s (model generation: 0.022228, model checking: 0.001055): Model: |_ { leq -> {{{ Q={q_gen_8643, q_gen_8645, q_gen_8664}, Q_f={q_gen_8643}, Delta= { (q_gen_8645) -> q_gen_8645 () -> q_gen_8645 (q_gen_8643) -> q_gen_8643 (q_gen_8645) -> q_gen_8643 () -> q_gen_8643 (q_gen_8645) -> q_gen_8664 } Datatype: Convolution form: left }}} ; mult -> {{{ Q={q_gen_8642, q_gen_8649, q_gen_8654, q_gen_8662, q_gen_8663}, Q_f={q_gen_8642}, Delta= { () -> q_gen_8649 (q_gen_8649) -> q_gen_8654 () -> q_gen_8662 (q_gen_8654) -> q_gen_8642 (q_gen_8662) -> q_gen_8642 (q_gen_8649) -> q_gen_8642 () -> q_gen_8642 (q_gen_8649) -> q_gen_8663 } Datatype: Convolution form: left }}} ; plus -> {{{ Q={q_gen_8641, q_gen_8647, q_gen_8660}, Q_f={q_gen_8641}, Delta= { () -> q_gen_8660 (q_gen_8647) -> q_gen_8647 () -> q_gen_8647 (q_gen_8641) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8647) -> q_gen_8641 (q_gen_8660) -> q_gen_8641 () -> q_gen_8641 } Datatype: Convolution form: left }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> leq([z, s(nn2)]) -> 6 () -> leq([z, z]) -> 5 () -> mult([n, z, z]) -> 9 () -> plus([n, z, n]) -> 7 (leq([nn1, nn2])) -> leq([s(nn1), s(nn2)]) -> 5 (leq([s(nn1), s(nn2)])) -> leq([nn1, nn2]) -> 5 (leq([s(nn1), z])) -> BOT -> 7 (mult([n, m, _hha])) -> leq([n, _hha]) -> 7 (mult([n, mm, _bha]) /\ plus([n, _bha, _cha])) -> mult([n, s(mm), _cha]) -> 7 (plus([n, mm, _wga])) -> plus([n, s(mm), s(_wga)]) -> 7 } Sat witness: Found: (() -> mult([n, z, z]), { n -> s(z) }) Total time: 0.354548 Reason for stopping: Disproved