Solving ../../benchmarks/true/nat_double_is_zero.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: 30s Convolution: complete Learning problem is: env: { nat -> {s, z} } definition: { (double, F: {() -> double([z, z]) (double([nn, _dca])) -> double([s(nn), s(s(_dca))])} (double([_eca, _fca]) /\ double([_eca, _gca])) -> eq_nat([_fca, _gca]) ) (is_zero, P: {(double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) (double([n, z])) -> is_zero([n])} ) } properties: {() -> is_zero([z])} over-approximation: {double} under-approximation: {is_zero} Clause system for inference is: { () -> double([z, z]) -> 0 ; () -> is_zero([z]) -> 0 ; (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 0 ; (double([n, z])) -> is_zero([n]) -> 0 ; (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 0 } Solving took 0.063062 seconds. Proved Model: |_ { double -> {{{ Q={q_gen_4747, q_gen_4749, q_gen_4750}, Q_f={q_gen_4747}, Delta= { (q_gen_4750) -> q_gen_4750 () -> q_gen_4750 (q_gen_4747) -> q_gen_4747 (q_gen_4749) -> q_gen_4747 () -> q_gen_4747 (q_gen_4750) -> q_gen_4749 } Datatype: Convolution form: complete }}} ; is_zero -> {{{ Q={q_gen_4746}, Q_f={q_gen_4746}, Delta= { () -> q_gen_4746 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.010125 s (model generation: 0.009946, model checking: 0.000179): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: complete }}} ; is_zero -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 0 ; () -> is_zero([z]) -> 3 ; (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 1 ; (double([n, z])) -> is_zero([n]) -> 1 ; (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 1 } Sat witness: Yes: (() -> is_zero([z]), { }) ------------------------------------------- Step 1, which took 0.010162 s (model generation: 0.010083, model checking: 0.000079): Model: |_ { double -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: complete }}} ; is_zero -> {{{ Q={q_gen_4746}, Q_f={q_gen_4746}, Delta= { () -> q_gen_4746 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 ; () -> is_zero([z]) -> 3 ; (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 1 ; (double([n, z])) -> is_zero([n]) -> 1 ; (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 1 } Sat witness: Yes: (() -> double([z, z]), { }) ------------------------------------------- Step 2, which took 0.010234 s (model generation: 0.009952, model checking: 0.000282): Model: |_ { double -> {{{ Q={q_gen_4747}, Q_f={q_gen_4747}, Delta= { () -> q_gen_4747 } Datatype: Convolution form: complete }}} ; is_zero -> {{{ Q={q_gen_4746}, Q_f={q_gen_4746}, Delta= { () -> q_gen_4746 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 ; () -> is_zero([z]) -> 3 ; (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 1 ; (double([n, z])) -> is_zero([n]) -> 1 ; (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 4 } Sat witness: Yes: ((double([nn, _dca])) -> double([s(nn), s(s(_dca))]), { _dca -> z ; nn -> z }) ------------------------------------------- Step 3, which took 0.007775 s (model generation: 0.007719, model checking: 0.000056): Model: |_ { double -> {{{ Q={q_gen_4747, q_gen_4750}, Q_f={q_gen_4747}, Delta= { () -> q_gen_4750 (q_gen_4747) -> q_gen_4747 (q_gen_4750) -> q_gen_4747 () -> q_gen_4747 } Datatype: Convolution form: complete }}} ; is_zero -> {{{ Q={q_gen_4746}, Q_f={q_gen_4746}, Delta= { () -> q_gen_4746 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 3 ; () -> is_zero([z]) -> 3 ; (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 4 ; (double([n, z])) -> is_zero([n]) -> 2 ; (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 4 } Sat witness: Yes: ((double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]), { _hca -> s(z) ; n -> z }) ------------------------------------------- Step 4, which took 0.012234 s (model generation: 0.008194, model checking: 0.004040): Model: |_ { double -> {{{ Q={q_gen_4747, q_gen_4749, q_gen_4750}, Q_f={q_gen_4747}, Delta= { () -> q_gen_4750 (q_gen_4749) -> q_gen_4747 () -> q_gen_4747 (q_gen_4750) -> q_gen_4749 } Datatype: Convolution form: complete }}} ; is_zero -> {{{ Q={q_gen_4746}, Q_f={q_gen_4746}, Delta= { () -> q_gen_4746 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> double([z, z]) -> 4 ; () -> is_zero([z]) -> 4 ; (double([n, _hca]) /\ is_zero([n])) -> eq_nat([_hca, z]) -> 4 ; (double([n, z])) -> is_zero([n]) -> 3 ; (double([nn, _dca])) -> double([s(nn), s(s(_dca))]) -> 7 } Sat witness: Yes: ((double([nn, _dca])) -> double([s(nn), s(s(_dca))]), { _dca -> s(s(z)) ; nn -> s(z) }) Total time: 0.063062 Reason for stopping: Proved