Solving ../../benchmarks/true/isaplanner_prop31.smt2... Inference procedure has parameters: Ice fuel: 200 Timeout: 30s Convolution: complete Learning problem is: env: { nat -> {s, z} } definition: { (min, F: {() -> min([s(u), z, z]) () -> min([z, y, z]) (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)])} (min([_dda, _eda, _fda]) /\ min([_dda, _eda, _gda])) -> eq_nat([_fda, _gda]) ) } properties: {(min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda])} over-approximation: {min} under-approximation: {} Clause system for inference is: { () -> min([s(u), z, z]) -> 0 ; () -> min([z, y, z]) -> 0 ; (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 0 ; (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 0 } Solving took 0.028940 seconds. Proved Model: |_ { min -> {{{ Q={q_gen_1773, q_gen_1775}, Q_f={q_gen_1773}, Delta= { (q_gen_1775) -> q_gen_1775 () -> q_gen_1775 (q_gen_1773) -> q_gen_1773 (q_gen_1775) -> q_gen_1773 (q_gen_1775) -> q_gen_1773 () -> q_gen_1773 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| ------------------- STEPS: ------------------------------------------- Step 0, which took 0.004382 s (model generation: 0.004244, model checking: 0.000138): Model: |_ { min -> {{{ Q={}, Q_f={}, Delta= { } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 0 ; () -> min([z, y, z]) -> 3 ; (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 1 ; (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 1 } Sat witness: Yes: (() -> min([z, y, z]), { y -> z }) ------------------------------------------- Step 1, which took 0.004560 s (model generation: 0.004356, model checking: 0.000204): Model: |_ { min -> {{{ Q={q_gen_1773}, Q_f={q_gen_1773}, Delta= { () -> q_gen_1773 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 3 ; () -> min([z, y, z]) -> 3 ; (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 1 ; (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 1 } Sat witness: Yes: (() -> min([s(u), z, z]), { u -> z }) ------------------------------------------- Step 2, which took 0.003731 s (model generation: 0.003637, model checking: 0.000094): Model: |_ { min -> {{{ Q={q_gen_1773, q_gen_1775}, Q_f={q_gen_1773}, Delta= { () -> q_gen_1775 (q_gen_1775) -> q_gen_1773 () -> q_gen_1773 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 3 ; () -> min([z, y, z]) -> 3 ; (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 1 ; (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 4 } Sat witness: Yes: ((min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]), { _cda -> z ; u -> z ; y1 -> z }) ------------------------------------------- Step 3, which took 0.003719 s (model generation: 0.003545, model checking: 0.000174): Model: |_ { min -> {{{ Q={q_gen_1773, q_gen_1775}, Q_f={q_gen_1773}, Delta= { () -> q_gen_1775 (q_gen_1773) -> q_gen_1773 (q_gen_1775) -> q_gen_1773 () -> q_gen_1773 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 3 ; () -> min([z, y, z]) -> 6 ; (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 2 ; (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 4 } Sat witness: Yes: (() -> min([z, y, z]), { y -> s(z) }) ------------------------------------------- Step 4, which took 0.005235 s (model generation: 0.005039, model checking: 0.000196): Model: |_ { min -> {{{ Q={q_gen_1773, q_gen_1775}, Q_f={q_gen_1773}, Delta= { () -> q_gen_1775 (q_gen_1773) -> q_gen_1773 (q_gen_1775) -> q_gen_1773 (q_gen_1775) -> q_gen_1773 () -> q_gen_1773 } Datatype: Convolution form: complete }}} } -- Equality automata are defined for: {eq_nat} _| Teacher's answer: New clause system: { () -> min([s(u), z, z]) -> 6 ; () -> min([z, y, z]) -> 6 ; (min([_hda, c, _ida]) /\ min([a, _jda, _kda]) /\ min([a, b, _hda]) /\ min([b, c, _jda])) -> eq_nat([_ida, _kda]) -> 3 ; (min([u, y1, _cda])) -> min([s(u), s(y1), s(_cda)]) -> 4 } Sat witness: Yes: (() -> min([s(u), z, z]), { u -> s(z) }) Total time: 0.028940 Reason for stopping: Proved