Les rencontres du NUMÉRIQUE de l’ANR
Verification of Indistinguishability Properties

Stéphanie Delaune

Équipe EMSEC (IRISA), CNRS, France

November 16th, 2016
VIP in a nutshell

Verification of Indistinguishability Properties

- Projet JCJC Jeunes Chercheuses Jeunes Chercheurs
- January 2012 - June 2016
- http://www.lsv.ens-cachan.fr/Projects/anr-vip/
VIP in a nutshell

Verification of Indistinguishability Properties

- Projet JCJC Jeunes Chercheuses Jeunes Chercheurs
- January 2012 - June 2016
- http://www.lsv.ens-cachan.fr/Projects/anr-vip/

Research Themes

- Formal verification of security protocols
- Privacy-related security properties: unlinkability, anonymity, . . .

Cryptographic protocols everywhere!
Cryptographic protocols everywhere!

Cryptographic protocols

- small programs designed to secure communication (e.g. secrecy, authentication, anonymity, ...)
- use cryptographic primitives (e.g. encryption, signature,)

The network is unsecure!

Communications take place over a public network like the Internet.
Cryptographic protocols everywhere!

Cryptographic protocols

- small programs designed to secure communication (e.g. secrecy, authentication, anonymity, ...)
- use cryptographic primitives (e.g. encryption, signature,)

It becomes more and more important to protect our privacy.
Electronic passport

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:
- the information printed on your passport,
- a JPEG copy of your picture.
Electronic passport

An electronic passport is a passport with an **RFID tag** embedded in it.

The **RFID tag** stores:
- the information printed on your passport,
- a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol that has been designed to also ensure **unlinkability**.

ISO/IEC standard 15408

Unlinkability aims to ensure *that a user may make multiple uses of a service or resource without others being able to link these uses together.*
BAC protocol

Passport
\((K_E, K_M)\)

Reader
\((K_E, K_M)\)

get_challenge

\(N_P\)

\(K_{seed} = f(K_P, K_R)\)

\(N_{PR}, K_P\)

\(N_{PR}, K_R\)
How cryptographic protocols can be attacked?
How cryptographic protocols can be attacked?

Logical attacks

- can be mounted even assuming perfect cryptography, \(\Rightarrow\) replay attack, man-in-the-middle attack, \(\ldots\)
- subtle and hard to detect by “eyeballing” the protocol
How cryptographic protocols can be attacked?

Logical attacks

- can be mounted even assuming perfect cryptography, → replay attack, man-in-the-middle attack, ...
- subtle and hard to detect by “eyeballing” the protocol

Examples

- An authentication flaw in the Needham-Schroeder protocol (1995);
- An authentication flaw in the Single Sign-On protocol used e.g. in GMail (2008);
- A traceability attack on the BAC protocol used in e-passport (2010).
A successful approach: formal symbolic verification

Main goal: provides a rigorous framework and automatic tools to analyse security protocols and find their flaws.
A successful approach: formal symbolic verification

Main goal: provides a rigorous framework and automatic tools to analyse security protocols and find their flaws.

Some success stories

- Attack on the Needham-Schroeder protocol discovered using the FDR model checker [Lowe, 1995]; → 17 years after the publication of the protocol!
- Authentication flaw in the Single Sign-On protocol discovered using the Avantssar platform [Armando et al., 2008].
A sucessful approach: formal symbolic verification

Main goal: provides a rigorous framework and automatic tools to analyse security protocols and find their flaws.

State of the art: Most of the existing verification tools were dedicated to the analysis of standard security goals (i.e. secrecy and authentication).

Main Objective of the VIP project
Develop foundations and practical tools to allow the formal analysis of privacy properties (e.g. anonymity, unlinkability)
Main issues of the VIP project
Beyond secrecy and authentication properties

Unlinkability aims to ensure *that a user may make multiple uses of a service or resource without others being able to link these uses together.*
Beyond secrecy and authentication properties

Unlinkability aims to ensure *that a user may make multiple uses of a service or resource without others being able to link these uses together.*

More formally, an observer/attacker can not observe the difference between the two following situations:

1. a situation where the same passport may be used *twice* (or even more);
2. a situation where each passport is used *at most once.*
Beyond secrecy and authentication properties

Unlinkability aims to ensure *that a user may make multiple uses of a service or resource without others being able to link these uses together.*

More formally, an observer/attacker can not observe the difference between the two following situations:

1. a situation where the same passport may be used *twice* (or even more);
2. a situation where each passport is used *at most once.*

Goal of the VIP project: Develop algorithms and tools for checking the notion of trace equivalence that is used to express that P and Q are *indistinguishable* from the attacker’s point of view.
Beyond standard cryptographic primitives

Modern applications often rely on non-classical cryptographic primitives.

Exclusive-or in RFID technology

\[
x \oplus x = 0 \quad x \oplus (y \oplus z) = (x \oplus y) \oplus z \\
\]

\[
x \oplus 0 = x \quad x \oplus y = y \oplus x
\]

Blind signature in e-voting systems.
Beyond standard cryptographic primitives

Modern applications often rely on non-classical cryptographic primitives.

Exclusive-or in RFID technology

\[x \oplus x = 0 \]
\[x \oplus (y \oplus z) = (x \oplus y) \oplus z \]
\[x \oplus 0 = x \]
\[x \oplus y = y \oplus x \]

Blind signature in e-voting systems.

Goal of the VIP project: Take into account these algebraic properties since some attacks exploit these properties.
A need for a modular approach

Real life protocols are usually complex and composed of several sub-protocols.

Verifying each sub-protocol in isolation is not sufficient!

Goal of the VIP project: Identify sufficient and reasonable conditions under which a modular security analysis is possible.
Results of the VIP project
The results in a nutshell

We improve the state of the art regarding trace equivalence checking.

- **Decidability results**
 → we provide the first decidability results in the unbounded setting

 Rémy Chrétien’s PhD thesis (defended in Jan. 2016)
 Expert Technique au Ministère de la Défense

- **Modular analysis**
 → we provide some good design principles to make sure that protocols can be analysed in isolation, and used in more complex environment.

- **Practical verification tools**
 → we developed several prototypes

- **Case studies:**
 → e-passport, RFID protocols, e-voting protocols
Practical verification tools for checking trace equivalence

→ they are available on the webpage of the VIP project.

Bounded number of sessions:

- **Apte** supports protocols with conditional branches;
- **Akiss** handles a wide variety of primitives \((e.g.\) blind signature, xor, \ldots\).
 → The work on the xor operator has been completed by **Ivan Gazeau** (post-doc on the VIP project), and has made possible the analysis of several RFID protocols.

Unbounded number of sessions:

- we extended **ProVerif** to prove more equivalences;
- **Ukano** (based on ProVerif) is devoted to the analysis of unlinkability for 2-party protocols.
Case studies: E-passport

We analyse several protocols issued from the e-passport application, as specified by the ICAO standard.

Main results

- several linkability attacks on the BAC protocol using Apte;
- the first formal security proof of the fixed version of BAC using Ukano;
- the discovery of several vulnerabilities on PACE (successor of BAC);
- a modular security analysis of BAC with PA and AA (two authentication protocols used in the e-passport application) assuming that the good design principles we proposed are fulfilled.
Conclusion
In a nutshell

Cryptographic protocols are:
- difficult to design and also difficult to analyse;
- particularly vulnerable to logical attacks.

Strong encryption schemes are necessary . . .

. . . but this is not sufficient!
In a nutshell

Cryptographic protocols are:

- difficult to design and also difficult to analyse;
- particularly vulnerable to logical attacks.

What kind of protocols are we able to analyse today?

- classical security properties (i.e. secrecy, authentication); and
- privacy-type properties on small protocols, and for relatively standard primitives.

Regarding the applications that are coming, this is not sufficient!
Reasoning about **Physical properties** Of **security Protocols**
with an Application To **contactless Systems**

Main issues:
- specificities of contactless systems are not well understood;
- a lack of formal model to reason about these systems.

Main outcomes:
- solid foundations to reason about physical properties;
- new algorithms and tools to analyse the security and privacy of modern protocols;
- make the upcoming generation of nomadic contactless devices more secure.