Intentional Labeled Transition Systems

Sophie Pinchinat
IRISA-INRIA
Campus de Beaulieu
F-35042, Rennes - France
Sophie.Pinchinat@irisa.fr
Plan

- Intentionally-Labeled Transition Systems
 - Relation with LTS
 - Combining Systems
 - Notion of Bisimulation
- Intentional Labeled Transition Systems
 - Parallel Composition
 - Bisimulation
- Symbolic Systems
- A Multi-Agents Framework
- Concluding Remarks (The Tool SIGALI)
First order language : syntax

- \mathcal{L} a first order language
 - Connectors \land, \neg, and the derived symbols \lor, \implies, \iff
 - Quantifiers \forall, \exists
 - Variables symbols an infinite set $E = \{e, e', \ldots\}$
 - Predicate symbols ρ, ρ_1, \ldots
 - Function symbols f, g, \ldots
Formulas $\mathcal{F}(\mathcal{L}) = \{ F, F_1, \ldots \}$

- $F(e_1, e_2, \ldots, e_m)$ means e_i is free in F
- Given \mathcal{F}_1 and \mathcal{F}_2 two sets of formulas
 $\mathcal{F}_1 \land \mathcal{F}_2$ is $\{ F_1 \land F_2 | F_i \in \mathcal{F}_i \}$
- Given $E' = \{ e_1, \ldots, e_m \} \subseteq E$
 $\exists E'. F$ is $\exists e_1 \exists e_2 \ldots \exists e_m F$
First order language: semantics

- Interpretation \mathcal{D}

 Domain of values D

 Meaning of the symbols f^D, P^D, \ldots and valuation of variables

- $(d_1, d_2, \ldots, d_m) \models^D F(e_1, e_2, \ldots, e_m)$ means
 the interpretation of F on \mathcal{D} with valuation $e_i \mapsto d_i, \forall i$ is true.

- $F^D(e_1, e_2, \ldots, e_m)[d/e_i]$ for $d \in \mathcal{D}$
 the $(d_1, \ldots, d_{i-1}, d, d_{i+1}, \ldots, d_m) \in D^{m-1}$ s.t.
 $(d_1, \ldots, d_{i-1}, d, d_{i+1}, \ldots, d_m) \models^D F(e_1, e_2, \ldots, e_m)$.

- $\models^D F(e_1, e_2, \ldots, e_m)$ means
 $(d_1, d_2, \ldots, d_m) \models^D F(e_1, e_2, \ldots, e_m)$, for all $(d_1, d_2, \ldots, d_m) \in D^m$
Notations

- **true** is any tautology
- $F[t/e]$ is the formula F in which any free occurrence of the variable e is replaced by t, a term of \mathcal{L}.
- Given $F(e_1, \ldots, e_m) \in \mathcal{F}(\mathcal{L})$ and an interpretation \mathcal{D}

 $\text{Sol}_\mathcal{D}(F)$ is the set of $(d_1, \ldots, d_m) \in D^m$ s.t. $(d_1, \ldots, d_m) \models F(d_1, \ldots, d_m)$.
- \mathcal{L} and $E = \{e_1, e_2, \ldots, e_m\}$

 $\mathcal{F}_E(\mathcal{L})$ the set of formulas of \mathcal{L} which free variables range over E
Intentionally-Labeled Transition Systems

- $S = (S, \mathcal{F}_E(\mathcal{L}), T, I)$ is a classic Transition System labeled on $\mathcal{F}_E(\mathcal{L})$

 \[s \xrightarrow{F} s' \]

 S states; $I \subseteq S$ are the initial states
 $T : S \times \mathcal{F}_E(\mathcal{L}) \times S$ is the transition relation
 Transitions are labeled by formulas in $\mathcal{F}_E(\mathcal{L})$
 intentionally-labeled

- E the set of event variables and $\text{Car}(E)$ is the dimension of S
From iLTS to LTS

- Let $S = (S, \mathcal{F}, T, I)$ be an iLTS of dimension m on (\mathcal{L}, E)
- Each interpretation \mathcal{D} for the formulas delivers an (exhaustive) labeled transition system over D^m written $\text{LTS}(S, \mathcal{D}) = (S, D^m, T, I)$

$$s^{(d_1, \ldots, d_m)} \rightarrow s' \text{ whenever } \begin{cases} s \xrightarrow{F} s' \text{ and} \\ (d_1, \ldots, d_m) \in \text{Sol}_D(F(e_1, \ldots, e_m)) \end{cases}$$

- $\text{LTS}(S, \mathcal{D})$ is finite if S, \mathcal{F}, and \mathcal{D} are finite
From LTS to iLTS

- From the LTS S (on domain D), build $iLTS(S)$ of dimension 1.
 \[s \xrightarrow{d} s' \quad \text{becomes} \quad s \xrightarrow{e=f_d} s' \]

- $iLTS(S)$ relies on the first order language where
 \[E = \{ e \} \] is a singleton set of variables
 \[f_d \] a function symbol for each $d \in D$ of arity 0; a constant
 \[= \] the equality predicate

Theorem For the interpretation \mathcal{D} where $f_d^\mathcal{D}$ is d itself,
the LTS S and $LTS(iLTS(S), \mathcal{D})$ are bisimilar
iLTS Synchronized Parallel Composition

- \(\mathcal{L} \) is fixed, \(E_1 \) and \(E_2 \) are event variables (think of channels)
- Given \(S_1 = (S_1, \mathcal{F}_1, T_1, I_1) \) of dim. \(m_1 \) on \((\mathcal{L}, E_1) \)
 \[S_2 = (S_2, \mathcal{F}_2, T_2, I_2) \) of dim. \(m_2 \) on \((\mathcal{L}, E_2) \)
- \(S_1 | S_2 = (S_1 \times S_2, \mathcal{F}_1 \land \mathcal{F}_2, T, I_1 \times I_2) \) where
 \[(s_1, s_2) \xrightarrow{F_1 \land F_2} (s'_1, s'_2) \]
 whenever \(s_1 \xrightarrow{F_1} s'_1 \) and \(s_2 \xrightarrow{F_2} s'_2 \)
 of dimension \(m \leq m_1 + m_2 \) in general, as events variables can be shared
- **Commutativity and Associativity of** \(| \) **is clear**
- The definition is simple (more than in the exhaustive framework)
Other Parallel Compositions

- Partially Synchronized Parallel Composition

\[(s_1, s_2) \xrightarrow{F_1 \land \neg (\bigvee_{F \in \text{ev}(s_2)} F)} (s'_1, s_2)\] whenever \(s_1 \xrightarrow{F_1} s'_1\)

where \(\text{ev}(s_2) = \{F \mid \exists s'_2, s_2 \xrightarrow{F} s'_2\}\)

- Asynchronous Parallel Composition

\[(s_1, s_2) \xrightarrow{F} (s'_1, s'_2)\] whenever \(\left\{ \begin{array}{l} s_1 \xrightarrow{F_1} s'_1 \text{ and } s_2 = s'_2 \text{ and } F = F_1, \text{ or} \\ s_1 = s'_1 \text{ and } s_2 \xrightarrow{F_2} s'_2 \text{ and } F = F_2 \end{array} \right.\)
Other Combinators

- Events Hiding \((E' \subseteq E)\)

 \((S \setminus E') = (S, F', T, I)\) on \(E \setminus E'\) is s.t.

 \[s_1 \xrightarrow{E'F} s'_1 \text{ whenever } s_1 \xrightarrow{F} s'_1. \]

- ...
Symbolic Bisimulation

- $S_1 = (S_1, F_1, T_1, I_1)$ and $S_2 = (S_2, F_2, T_2, I_2)$ over the same (L, E)
 and \mathcal{D} be an interpretation of L.

- A **D-symbolic bisimulation** between S_1 and S_2 is $\mathcal{R} \subseteq S_1 \times S_2$
 $s_1 \mathcal{R} s_2$ iff (1) for all $s_1 \xrightarrow{F} s'_1$, there are finitely many $(s_2 \xrightarrow{F_j} s'_2)_j$ s.t.
 $\models^\mathcal{D} (F \Rightarrow \bigvee_j F_j)$, and $s'_1 \mathcal{R} s'_2 \quad \forall j$
 (2) and vice versa.

Theorem There exists a D-symbolic bisimulation between S_1 and S_2 if and only if there exists a bisimulation between LTS(S_1, \mathcal{D}) and LTS(S_2, \mathcal{D}).
Intentional Labeled Transition Systems

- $S = (X, Y, T, I)$ an Intentional Labeled Transition Systems (ILTS)
 - States variables $X = \{x_1, x_2, \ldots, x_n\}$ (and a copy $X' = \{x'_1, x'_2, \ldots, x'_n\}$) is a finite set of variable symbols of \mathcal{L}.
 - Events variables $Y = \{y_1, y_2, \ldots, y_m\}$ a set of variable symbol of \mathcal{L} disjoint from $X \cup X'$;
 - $T(x_1, \ldots, x_n, y_1, \ldots, y_m, x'_1, \ldots, x'_n)$ or simply $T(X, Y, X')$ is a formula of \mathcal{L} which free variables range over $X \cup Y \cup X'$;
 - $I(x_1, \ldots x_n)$ is a formula of \mathcal{L}.
- $(\text{Card}(X), \text{Card}(Y))$ is the dimension of S
ILTS Parallel Composition

\[S_1 | S_2 = (X_1 \cup X_2, Y_1 \cup Y_2, \tau_1(X_1, Y_1, X_1') \land \tau_2(X_2, Y_2, X_2'), I_1(X_1) \land I_2(X_2)) \]

Resource sharing \(X_1 \cap X_2 \neq \emptyset \)

Events (or communication channels) sharing \(Y_1 \cap Y_2 \neq \emptyset \)
Define $R_0(X_1, X_2) = \text{true}$, and

$$R_{k+1}(X_1, X_2) = R_k(X_1, X_2) \land$$

$$\land \left\{ \forall X'_1 \forall Y [T_1(X_1, Y, X'_1) \Rightarrow \exists X'_2 T_2(X_2, Y, X'_2) \land R_k(X'_1, X'_2)] \right\}$$

$$\land \left\{ \forall X'_2 \forall Y [T_2(X_2, Y, X'_2) \Rightarrow \exists X'_1 T_1(X_1, Y, X'_1) \land R_k(X'_1, X'_2)] \right\}$$

If D is finite, the logical operations are computable and formulas equivalence on $\mathcal{F}(\mathcal{L})$ is decidable, $R^D_k(X_1, X_2)$ eventually stabilizes (modulo formulas equivalence) as $R^D(X_1, X_2)$

Theorem For all $d_1 \in D$ and $d_2 \in D$, $R^D(d_1, d_2)$ if and only if d_1 and d_2 are bisimilar (in LTS(S_1, D) and LTS(S_2, D))
Symbolic Transition Systems

- $\mathcal{T}(X, Y, X')$ is an expression “$P(X, Y, X') = 0$”

 where $P(X, Y, X') \in \mathbb{Z}/p\mathbb{Z}[X \cup Y \cup X']$ (the ring of polynomials)
 with coefficients in the field $\mathbb{Z}/p\mathbb{Z}$ (p prime)

- \mathcal{L} is

 \{0, 1, 2, ..., $p - 1$, $\mathit{+}$, \ast, $-$, $/$\} (function symbols)

 $\{\mathit{=}\}$ (predicate symbols)

- $sol(P(X, Y, X')) \overset{\text{def}}{=} \{ (d^{x_1}, \ldots, d^{x_n}, d^{y_1}, \ldots, d^{y_m}, d^{x'_1}, \ldots, d^{x'_n}) \in \mathbb{Z}/p\mathbb{Z}^{2n+m} \}$
 \[
 \left\{ \begin{array}{l}
 \left| P(d^{x_1}, \ldots, d^{x_n}, d^{y_1}, \ldots, d^{y_m}, d^{x'_1}, \ldots, d^{x'_n}) = 0
 \end{array} \right.
 \right.
 \]

 Hence

 $Sol_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{T}(X, Y, X')) = sol(P(X, Y, X'))$
Symbolic Combinators and Computation

- $Sol_{\mathbb{Z}/p\mathbb{Z}}(T_1(X_1, Y_1, X'_1) \diamond T_2(X_2, Y_2, X'_2)) = \text{sol}(P_1(X_1, Y_1, X'_1) \diamond P_2(X_2, Y_2, X'_2))$

<table>
<thead>
<tr>
<th>$P_1 \oplus P_2$</th>
<th>$P_1 \cdot P_2$</th>
<th>$1 - P^{p-1}$</th>
<th>If $z \in {X \cup Y \cup X'}$</th>
<th>$\Pi_{d \in \mathbb{Z}/p\mathbb{Z}} P(X, Y, X')[d/z]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{def } (P_1^{p-1} + P_2^{p-1})^{p-1}$</td>
<td></td>
<td></td>
<td>for $\exists z$</td>
<td></td>
</tr>
</tbody>
</table>

- [Dutertre92] Each $P(X \cup Y \cup X')$ has a computable canonical representative modulo $\langle (X \cup Y \cup X')^p - (X \cup Y \cup X') \rangle$
Implementing Polynomials and Tools

- **p-Decision Diagrams**
 - BDD package Tiger CMU in the SMV Tool [McMillan93]; $p = 2$
 - TDD package in the SIGALI Tool [Dutertre-Leborgne93];
 \[p = 3 \text{ (1 true, } -1 \text{ false, } 0 \text{ absent, in SIGNAL language)} \]
- Since \(\mathbb{Z}/p\mathbb{Z} \) is finite, the operations on polynomials and 0-test are computable, \(R_k^{\mathbb{Z}/p\mathbb{Z}}(X_1, X_2) \) (modulo \((X_1 \cup X_2)^p - (X_1 \cup X_2) \)) eventually stabilizes
- Use the algorithm to compute the greatest symbolic bisimulation
A Multi-Agents Framework

- Close to *Alternating Time Transition Systems* [AHK98]

- Suppose m agents $\{1, \ldots, m\}$, each agent “controls” one component in the vector event $Y = \{t_1, y_2, \ldots, y_m\}$.

- Assume, we want to characterize by $PreGood(X)$ (the set of) states s.t. agents 1 and 2 can cooperate (against the $m-2$ others) to inevitably reach in one step a given set of states $Good(X)$

\[
PreGood(X) = \exists \{y_1, y_2\} \forall \{y_3, \ldots, y_m\} \exists X'[\mathcal{T}(X, Y', X') \land Good(X')]
\]

\[
(x_1, \ldots, x_n) \xrightarrow{(a,b*,\ldots,*\,\textit{a})} (x_1, \ldots, x_n)
\]
Concluding Remarks

- **ILTS** a general framework to talk about symbolic systems, vectorial systems, ... with general algorithm patterns for bisimulation, symbolic model-checking, etc. *A multi-agents view* generalizing control problems, ...

- **The Sigali Tool**

 The Control of Polynomial Dynamical Systems (in $\mathbb{Z}/3\mathbb{Z}$)

 Set Y splits into $K \cup U$ controllable and uncontrollable events variables

 \[
 \begin{align*}
 Q_0(X) &= 0 \\
 Q(X, Y) &= X' \\
 \end{align*}
 \sim
 \begin{align*}
 Q_0(X) \oplus C_0(X) &= 0 \\
 Q(X, Y) &= X' \\
 C(X, Y) &= 0 \\
 \end{align*}

- **For Reachability, Inevitability, Persistence, and Recurrence** of a set of states