A theory of interfaces

Sophie.Pinchinat{@iris.fr}
IRISA, Université de Rennes 1, France

work done by Jean-Baptiste Raclet, INRIA, Grenoble, France

February 25, 2010
Agents, Groups, etc...

How agents interact with each other and this is all that matters to reason about groups ⇒ an interface between the agent and the external world.

Agents can form groups, and groups are somehow (meta) agents.

Given an interface (for say a group) can we combine agents to form “this” group?
The formal framework

Fix an alphabet Act of events.

- **Agents** = Deterministic finite state machines

 $$a = (Q_a, \text{Act}, q_a^0, \delta_a)$$

 We use a, b, c, a_1, \ldots

- **Interfaces** over the alphabet $\text{Act} = \{e, f, g\}$

We use A, B, C, A_1, \ldots

```
0 e f
  ↓
1 e f
  ↓
2 e
  ↓
3 e, f
```

We use A, B, C, A_1, \ldots

```
--→  “may e”

  e →  “Must e”
```
Fix an interface A (over Act).

- In each state q of A, we have
 - two subsets $\text{may}(A)(q)$, $\text{Must}(A)(q) \subseteq Act$
 - the subset $\text{maynot}(A)(q) := Act \setminus \text{may}(A)(q)$

If $\text{Must}(A)(q) \cap \text{maynot}(A)(q) \neq \emptyset$, state q is inconsistent, which we may write as \bot.
Assume for the moment that all states of A are consistent.

- **Agent a satisfies interface A, written $a \models A$, or $a \in Mod(A)$, whenever a is obtained from A by cutting may-transitions or making them solid.**

 ![Diagram of agent A and interface a]

- **Agents $\not\rightarrow$ Interfaces**

 $a \leftrightarrow a^*$ in a natural way, ie $a \in Mod(a^*)$.

- **$Mod(a^*)$ contains only a, up to bisimulation.**
Refinement, as logical implication

\[A \sqsubseteq B \] “A refines B”, whenever there exists \(\rho \subseteq Q_A \times Q_B \) such that

\begin{enumerate}
 \item \((q_A^0, q_B^0) \in \rho,\)
 \item may-transitions in \(A \) are reflected in \(B \), and
 \item must-transitions in \(B \) are reflected in \(A \).
\end{enumerate}

Alternating simulation/refinement in games structures [AHKV98].

Proposition

\[A \sqsubseteq B \text{ if, and only if, } Mod(A) \subseteq Mod(B). \]

In particular, \(a \in Mod(A) \) can be rephrased as \(a^* \sqsubseteq A \).

Proposition [AHKV98]

We can decide in PTIME whether \(A \sqsubseteq B \).
We want to define $A \land B$ so that

Proposition

$$\text{Mod}(A \land B) = \text{Mod}(A) \cap \text{Mod}(B)$$

As a corollary $A \land B \sqsubseteq A$ and it is the \sqsubseteq-greatest (lower bound)

Definition of $A \land B$

$$A \land B := (Q_A \times Q_B, (q_A^0, q_B^0), \ldots) \text{ with}$$

- $\text{may}(A \land B)(q_A, q_B) := \text{may}(A)(q_A) \cap \text{may}(B)(q_B)$
- $\text{Must}(A \land B)(q_A, q_B) := \text{Must}(A)(q_A) \cup \text{Must}(B)(q_B)$

Must increases whereas may decreases \Rightarrow inconsistent states.
About consistency

Proposition

\[\text{Mod}(A) \neq \emptyset \text{ if, and only if, no Must-path reaching } \bot. \]

- You may prune your interface to remove inconsistent states.
- The empty interface \(\bot \) corresponds to "false" in the underlying logic.
- The interface \(\top \) for "true" is the one state + dashed flower structure.

Proposition

- Consistency can be decided in LOGSPACE (Reachability).
- If \(A \) is consistent it has a minimal and a maximal model.
Make agents work together

- Standard synchronous product of agents
 (= product of deterministic finite state machines)

\[a \times b := (Q_a \times Q_b, (q_a^0, q_b^0), \ldots) \]

- Abstract from which agents in particular

\[A \otimes B := (Q_A \times Q_B, (q_A^0, q_B^0), \ldots) \]

Proposition

\[\text{Mod}(A) \otimes \text{Mod}(B) \subseteq \text{Mod}(A \otimes B) \text{ (strict inclusion in general).} \]
Definition of $A \otimes B$

$$A \otimes B := (Q_A \times Q_B, (q^0_A, q^0_B), \ldots) \text{ with}$$

- $\text{may}(A \otimes B)(q_A, q_B) := \text{may}(A)(q_A) \cap \text{may}(B)(q_B)$
- $\text{Must}(A \otimes A)(q_A, q_B) := \text{Must}(A)(q_A) \cap \text{Must}(B)(q_B)$

\[\begin{array}{|c|c|c|c|}
\hline
\otimes & e & e & e \\
\hline
e & \rightarrow & e & e \\
\hline
e & \rightarrow & e & e \\
\hline
\rightarrow & e & \rightarrow & e \\
\hline
\rightarrow & e & \rightarrow & e \\
\hline
\rightarrow & e & \rightarrow & e \\
\hline
\end{array}\]
Properties of \otimes

- $\text{Mod}(a^* \otimes b^*)$ contains only $a \times b$ (up to bisimulation).

- \otimes is commutative and associative.

- Neutral element: one state $+$ solid flower.

- \otimes is monotonic: $A \sqsubseteq B$ implies $A \otimes C \sqsubseteq B \otimes C$
Suppose we have to find X_1, X_2, \ldots, X_k such that

$$X_1 \otimes X_2 \otimes \ldots \otimes X_k \sqsubseteq A$$

where the X_i’s range over \{\(A_1, A_2, \ldots, A_n\}\}.

How can we proceed? We define a quotient \ominus such that

$$A_1 \otimes A_2 \sqsubseteq A \text{ if, and only if } A_2 \sqsubseteq A \ominus A_1$$
Definition of $A \otimes B$

$A \otimes B := (Q_A \times Q_B, (q_A^0, q_B^0), \ldots)$ with

\[
\begin{array}{|c|c|c|c|}
\hline
\otimes & e & e & e \\
\hline
 e & e & e & T \\
\hline
 e & \bot & e & \bot \\
\hline
 e & e & e & T \\
\hline
\end{array}
\]

Proposition

$(A \otimes A_1) \otimes A_2 \equiv A \otimes (A_1 \otimes A_2)$
Achieving interfaces

There are many ways to think of it. I give here one example. From

\[X_1 \otimes X_2 \otimes \ldots \otimes X_k \subseteq A \]

where each \(X_i \in A := \{ A_1, A_2, \ldots, A_n \} \).

1. \(C := A \)
2. Select \(A_{i_1} \in A \) and compute \(C := C \ominus A_{i_1} \);
3. Select \(A_{i_2} \in A \) and compute \(C := C \ominus A_{i_2} \);
4. \ldots
5. Select \(A_{i_k} \in A \) and compute \(C := C \ominus A_{i_k} \);

At the end, if \(C \equiv \top \) then done, otherwise \(C \) is the needed mediator interface.
The logical view

- Interfaces as a fragment of the μ-calculus [Kozen83]:
 - \longrightarrow is $[e]$ and $\stackrel{e}{\longrightarrow}$ is $\langle e \rangle$.
 - + conjunction, greatest fixed-points and but no outermost negation.

Interfaces $\hookrightarrow L_\mu$: $A \hookrightarrow \alpha$

- Quotient between mu-calculus formulas exists ([AVW03],...):
 - $P \models \varphi/\psi$ if and only if $\exists C \models \psi$, $P \times C \models \varphi$, constructive procedure on the tree automata of the formulas.
 - We can then compute $\alpha \otimes \beta$ as $\neg(\neg\alpha/\beta)$ but @exptime because of two complementations.

However, our quotient is polynomial.
Slight extensions with “local” disjunctions, eg

\[
Acc(A)(q) = \{\{e, f\}, \{e, g\}\}
\equiv (\langle e \rangle \top \land \langle f \rangle \top) \text{XOR}(\langle e \rangle \top \land \langle g \rangle \top)
\]

It generalizes may and Must sets and the entire theory works well.

• Quotienting make things bigger.

• Selection criteria?

• Extension to capture, eg interdependency, reliability, prudence,

Eg, \(\sim^e\) for “I cannot do \(e\) but I can follow a companion”.

Sophie.Pinchinat {@irisa.fr} IRISA, Université de Rennes 1, France work done by Jean-Baptiste Raclet, INRIA, Grenoble, France