Automatic structures, chain Monadic Second-Order logic, Epistemic planning synthesis.

Gaëtan Douéneau-Tabot
Sophie Pinchinat
François Schwarzentruber

ENS Paris-Saclay, Université Paris-Saclay
IRISA, Université de Rennes
IRISA, ENS Rennes

FMAI 2019, Rennes
Outline

1 Motivation

2 Model checking on automatic structures

3 Regular automatic trees

4 Application: Epistemic planning
Motivations

- Uniform strategies in imperfect information games (Maubert 2014)
- Models of epistemic temporal logic, interpreted systems (Halpern-Vardi 1989)
- Epistemic planning (Pinchinat et al. 2018)

Trade-off between

\[\{ \text{the class of infinite structures} \quad \text{the considered logic} \} \]
Motivation
Model checking on automatic structures
Regular automatic trees
Application: Epistemic planning

Contribution

DECIDABLE

UNDECIDABLE
1 Motivation

2 Model checking on automatic structures
 • Structures
 • Automatic presentations
 • Logics

3 Regular automatic trees

4 Application: Epistemic planning
Outline

1 Motivation

2 Model checking on automatic structures
 - Structures
 - Automatic presentations
 - Logics

3 Regular automatic trees

4 Application: Epistemic planning
Motivation
Model checking on automatic structures
Regular automatic trees
Application: Epistemic planning

Structures
Automatic presentations
Logics

(Relational) structures
Interpretations for logics like FO and MSO

$S = \langle D, R_1 \ldots R_p \rangle$
- Domain $D \neq \emptyset$
- Relations $R_i \subseteq D^{r_i}$

Example
$\langle \mathbb{N}, \leq \rangle$

Definition (Tree structures)
$T = \langle D, r, S_1, \ldots, S_n, R_1, \ldots, R_p \rangle$
- $(n$-ary tree)$
- $D \subseteq \{1, \ldots, n\}^*$ prefix-closed
- $r(\varepsilon)$ only
- $S_j(u, v.j)$ whenever $u.j \in D$
- R_1, \ldots, R_p additional relations on D
 such as the “at equal level” binary relation.
Full binary trees

\[T_2 = \langle \{1, 2\}^*, S_1, S_2 \rangle \]

\[S_i(u, u.i) \text{ for every } u \in \{1, 2\}^* \]

\[T_2^{el} = \langle \{1, 2\}^*, S_1, S_2, el \rangle \text{ with relation “at equal level”: } \]

\[el(u, v) \text{ whenever } |u| = |v| \]
Motivation

Model checking on automatic structures

Regular automatic trees

Application: Epistemic planning

Outline

1. Motivation

2. Model checking on automatic structures
 - Structures
 - Automatic presentations
 - Logics

3. Regular automatic trees

4. Application: Epistemic planning
An example

Take structure $\langle \mathbb{N}, \leq \rangle$.

- Encode $n \in \mathbb{N}$ by $11\ldots1 = \text{enc}(n)$
- Encoding of relation \leq: the pair $(1^2, 1^3)$ is represented by
 \[1^2 \otimes 1^3 := (\frac{1}{1})(\frac{1}{1})(\square_1) \quad \text{(convolution)} \]

Use two-tape automaton to accept input $1^n \otimes 1^m$ whenever $n \leq m$.

\[\mathcal{A}_{\leq}: \quad \text{start} \rightarrow q_0 \rightarrow q_1 \]

- $1^2 \otimes 1^3 \in \mathcal{L}(\mathcal{A}_{\leq})$
- $1^3 \otimes 1^2 = (\frac{1}{1})(\frac{1}{1})(\square_1) \notin \mathcal{L}(\mathcal{A}_{\leq})$
\(\mathcal{T}_2 \) and \(\mathcal{T}^\text{el}_2 \) are automatic

Recall \(\mathcal{T}_2 = \langle \{1, 2\}^*, S_1, S_2 \rangle \) and \(\mathcal{T}^\text{el}_2 = \langle \{1, 2\}^*, S_1, S_2, \text{el} \rangle \)

- Encode nodes with their address \(u \in \{1, 2\}^* \)
- \(S_1(u, v) \) iff \(v = u.1 \)

\[A_{S_1} : \]
\[
\begin{array}{c}
(\frac{1}{1}), (\frac{2}{2}) \\
\text{start} \rightarrow q_0 \rightarrow q_1 \\
(\frac{1}{1}) \rightarrow q_2 \\
(\frac{2}{1}), (\frac{2}{2})
\end{array}
\]

Similarly \(A_{S_2} \ldots \)

- \(\text{el}(u, v) \) iff \(|u| = |v| \)

\[A_{\text{el}} : \]
\[
\begin{array}{c}
(\frac{1}{1}), (\frac{1}{2}), (\frac{2}{1}), (\frac{2}{2}) \\
\text{start} \rightarrow q_0 \rightarrow q_1 \\
(\frac{1}{1}), (\frac{1}{2}), (\frac{2}{1}), (\frac{2}{2})
\end{array}
\]
Automatic presentations

Definition

An **automatic presentation** of structure $S = \langle D, R_1 \ldots R_p \rangle$ is $(\mathcal{A}_D, \mathcal{A}_1, \ldots, \mathcal{A}_p)$ a tuple of (finite-state) automata with

- a bijective **encoding function** $enc : D \rightarrow \mathcal{L}(\mathcal{A}_D)$
- $\mathcal{L}(\mathcal{A}_i) = enc(R_i)$:

 \[
 u_1 \otimes \cdots \otimes u_{r_i} \in \mathcal{L}(\mathcal{A}_i)
 \]

 iff

 \[
 u_j \in \mathcal{L}(\mathcal{A}_D) \text{ and } (enc^{-1}(u_1), \ldots, enc^{-1}(u_{r_i})) \in R_i
 \]

$(\mathcal{A}_D, \mathcal{A}_1, \ldots, \mathcal{A}_p) \leadsto$ structure $S(\mathcal{A}_D, \mathcal{A}_1, \ldots, \mathcal{A}_p)$
Outline

1 Motivation

2 Model checking on automatic structures
 - Structures
 - Automatic presentations
 - Logics

3 Regular automatic trees

4 Application: Epistemic planning
Motivation
Model checking on automatic structures
Regular automatic trees
Application: Epistemic planning

Structures
Automatic presentations
Logics

Logics FO and MSO

- $V_1 = \{x, x_1, x_2, \ldots\}$ set of first-order variables
- $V_2 = \{X, X_1, \ldots, Y, \ldots\}$ set of second-order variables

$MSO \ni \varphi ::= R_i(x_1 \ldots x_{r_i}) | \neg \varphi | (\varphi \land \varphi) | \exists x \varphi | x \in X | \exists X \varphi$

Gaëtan Douéneau-Tabot Sophie Pinchinat François Schwarzentruber
Model checking on automatic structures against FO

\[\text{MC-FO} \begin{cases} \text{Input : } (A_D, A_1, \ldots, A_p) \text{ an A.S., FO-formula } \varphi. \\
\text{Output : } S(A_D, A_1, \ldots, A_p) \models \varphi? \end{cases} \]

Theorem ([Khoussainov and Nerode 1995, Grädel and Bumensath 2000, Rubin 2008])

MC-FO is decidable.

Main ingredient: for \(\varphi(x_1 \ldots x_n) \in FO \), structure \(S \),

\[\varphi^S := \{(d_1 \ldots d_n) \in D^n \mid S, [x_i \mapsto d_i] \models \varphi[x_1 \ldots x_n]\} \]

Proposition

Effective construction of automaton \(A_\varphi \) s.t. \(L(A_\varphi) = \text{enc}(\varphi^S) \).
Bottom-up construction of A_φ: intuitive example

Take $\varphi(x) := \exists z R_2(z, x) \land \neg p(x)$

$\varphi^S := \{ d \in D \mid S, [x \mapsto d] \models \varphi[x] \}$

1. Project $A_{R_2(x, z)}$ given by the automatic presentation, onto the first component and get $A_{\exists z R_2(x, z)}$;

2. Take $A_p(x) \in A$, complement it and get $A_c^p(x)$ and compute $A_D \cap A_c^p(x)$ to get the automaton $A_{\neg p(x)}$;

3. Compute $A_{\exists z R_2(x, z)} \cap A_{\neg p(x)}$ to get automaton $A_{\exists z R_2(z, x) \land \neg p(x)}$.

$L(A_\varphi(x)) = \{ \text{enc}(d) \mid d \in \varphi^S \}$.
Model checking on automatic structures against MSO

\[\text{MSO } \exists \varphi ::= R_i(x_1 \ldots x_r) | \neg \varphi | (\varphi \land \varphi) | \exists x \varphi | x \in X | \exists X \varphi \]

\[\text{MC-MSO } \begin{cases} \text{Input} : (A_D, A_1, \ldots, A_p), \text{MSO-formula } \varphi \\ \text{Output} : S(A_D, A_1, \ldots, A_p) \models \varphi ? \end{cases} \]

Proposition (Barany 2007)

MC-MSO is decidable if \(L(A_D) \subseteq \{1\}^* \) (unary alphabet, e.g., \((\mathbb{N}, \leq))\)

Theorem (Rabin 1969)

MSO-theory of \(T_2 = \langle \{1, 2\}^*, S_1, S_2 \rangle \) is decidable (full binary tree)

Theorem (Thomas 1990)

MSO-theory of \(T_2^{el} = \langle \{1, 2\}^*, S_1, S_2, el \rangle \) is undecidable (equal level)
Variants of MSO over trees
Different restrictions of second-order quantifications

(a) MSO quantification over any subset
(b) path-MSO quantification over any path in a tree
(c) cMSO quantification over any chain in a tree
Outline

1. Motivation
2. Model checking on automatic structures
3. Regular automatic trees
 • Chain MSO
4. Application: Epistemic planning
Regular automatic trees (RegAutTrees)

A particular encoding!

Definition (RegAutTree)

Tree $\mathcal{T} = \langle D, r, S_1, \ldots, S_n, R_1, \ldots, R_p \rangle$ is regular automatic if

- its language of node addresses is regular
- $\text{enc}_{\text{address}} : D \rightarrow \{1, \ldots, n\}^*$ allows an automatic presentation of \mathcal{T}

\[
\langle \mathcal{A}_D, \mathcal{A}_r, (\mathcal{A}_{S_i})_{1 \leq i \leq n}, (\mathcal{A}_{R_i})_{1 \leq i \leq p} \rangle
\]

The canonical representation of \mathcal{T}.

Theorem

RegAutTrees is a proper subclass of automatic trees.
Regular automatic trees \subsetneq Automatic trees

Set of addresses
\[\{1^m2^k \mid 0 \leq k \leq m\} \]

\[\leadsto \text{not a regular automatic tree} \]

Write $\text{bin}(n)$ for the binary encoding of n with least significant digit first.

\[\text{enc}(1^m2^k) := \text{bin}(m) \otimes \text{bin}(k) \]

\[\text{enc}(112) = \text{enc}(1^22^1) \]
\[= \text{bin}(2) \otimes \text{bin}(1) \]
\[= (0)(1) \]

$\text{enc}(D), \text{enc}(S_1), \text{enc}(S_2)$ and $\text{enc}(el)$ are regular languages.
Properties of RegAutTrees

In \(\mathcal{T} = \langle D, r, S_1, \ldots, S_n, R_1, \ldots, R_p \rangle \), define

- Generalized successor relation \(S := \bigcup_{i=1}^{n} S_i \)
- Reflexive and transitive closure \(S^* \) of \(S \)
- Binary relation \(\preceq \) for ‘deeper in the tree’
- Binary relation \(\text{el} \) for “at equal level”
- Equality relation \(= \)

Lemma

\(\mathcal{T} = \langle D, r, S_1, \ldots, S_n, R_1, \ldots, R_p \rangle \in \text{RegAutTrees} \) implies
\(\langle D, r, S_1, \ldots, S_n, R_1 \ldots R_p, S^*, \preceq, \text{el}, = \rangle \in \text{RegAutTrees}. \)

FO is decidable on RegAutTrees.
Chains in trees

Tree $\mathcal{T} = \langle D, r, S_1, \ldots, S_n, R_1, \ldots, R_p \rangle$.

Definition

$C \subseteq D$ is a chain if it is totally ordered with respect to S^*:

for all $u, v \in C$, either $S^*(u, v)$ or $S^*(u, v)$.

Outline

1 Motivation

2 Model checking on automatic structures

3 Regular automatic trees
 • Chain MSO

4 Application: Epistemic planning
Logic cMSO

cMSO $\exists \varphi ::= R_i(x_1 \ldots x_r) | \neg \varphi | (\varphi \land \varphi) | \exists x \varphi | x \in X | \exists X \varphi$

interpreted over $T = \langle D, r, S_1, \ldots, S_n, R_1, \ldots, R_p \rangle$ + assignment σ

$T, \sigma \models \exists X \varphi$ iff there exists a chain $C \in Chains(T)$ s.t.
$T, \sigma[X \mapsto C] \models \varphi.$

Example ("X is a maximal path starting at node x_0")

$x_0 \in X \land$
$\forall x \{ x \in X \rightarrow [(\exists y S(x, y) \rightarrow \exists y (S(x, y) \land y \in X)) \land \neg S(x, x_0)] \}$

Corollary

cMSO subsumes path-MSO.
Motivation

Model checking on automatic structures
- Regular automatic trees
- Application: Epistemic planning

Chain MSO

Model checking on RAT against cMSO

Theorem

\[\text{MC-RATcMSO} \left\{ \begin{array}{l}
\text{Input : } T \in \text{RAT (canon. pres.), } \varphi \in \text{cMSO} \\
\text{Output : } T \models \varphi?
\end{array} \right. \]

Theorem

\[\text{MC-RATcMSO is decidable.} \]

The proof uses automata constructions, inspired from (Thomas 1997).
Corollaries of MC-RATcMSO decidability

- Since over a unary alphabet every set is a chain:

Corollary (Barany 2007)

The MSO-theory of automatic structures on a unary alphabet is decidable.
Corollaries of MC-RATcMSO decidability

- Since over a unary alphabet every set is a chain:

 \textbf{Corollary (Barany 2007)}

 \textit{The MSO-theory of automatic structures on a unary alphabet is decidable.}

- Since in RAT, relations S^*, \preccurlyeq, el, $=$ are regular:

 \textbf{Corollary}

 \textit{The cMSO$[r, S_1, \ldots, S_n, R_1, \ldots, R_p, S^*, \preccurlyeq, el, =]$-theory of RATs is decidable.}
Corollaries of MC-RATcMSO decidability

- Since over a unary alphabet every set is a chain:

 Corollary (Barany 2007)

 The MSO-theory of automatic structures on a unary alphabet is decidable.

- Since in RAT, relations S^*, \triangleleft, el, $=$ are regular:

 Corollary

 The cMSO[r, S_1, ..., S_n, R_1, ..., R_p, S^, \triangleleft, el, $=$]-theory of RATs is decidable.*

- Since one can express in cMSO that a chain is a path:

 Corollary

 The path-MSO-theory of RATs is decidable.
Outline

1 Motivation

2 Model checking on automatic structures

3 Regular automatic trees

4 Application: Epistemic planning
 - Dynamic Epistemic Logic
 - Logics of knowledge and time
Outline

1 Motivation

2 Model checking on automatic structures

3 Regular automatic trees

4 Application: Epistemic planning
 - Dynamic Epistemic Logic
 - Logics of knowledge and time
Dynamic Epistemic Logic: DEL presentation \((\mathcal{M}, w), \mathcal{E}\)
(Baltag et al. 1998, van Ditmarsch et al. 2007)

\(\mathcal{M}\) an epistemic model

\[w : \{p\} \quad a \quad b \quad u : \emptyset \]

\(\mathcal{E}\) an event model

\[e : \text{pre} : p \quad \text{post} : p \leftarrow \bot \]

\[f : \text{pre} : \top \quad \text{post} : b \]

\[\mathcal{M} \otimes \mathcal{E} \]

\(\mathcal{M} \otimes \mathcal{E}, w \not\models K\neg p\), but

\(\mathcal{M} \otimes \mathcal{E}, w \models <E, e> K\neg p\)
Dynamic Epistemic Logic: DEL presentation \((M, w), E\)

(Baltag et al. 1998, van Ditmarsch et al. 2007)

\(M\) an epistemic model

\(w : \{p\} \quad u : \emptyset\)

\(E\) an event model

\(e : \begin{align*}
\text{pre} & : p \\
\text{post} & : p \leftarrow \perp
\end{align*}\)

\(f : \begin{align*}
\text{pre} & : \top \\
\text{post} & :
\end{align*}\)

\(M \otimes E\)
Dynamic Epistemic Logic: DEL presentation \((M, w), \mathcal{E}\)
(Baltag et al. 1998, van Ditmarsch et al. 2007)

\(M\) an epistemic model

\(w : \{p\}\)

\(u : \emptyset\)

\(a\)

\(b\)

\(E\) an event model

\(e : \begin{align*}
\text{pre} & : p \\
\text{post} & : p \leftarrow \bot
\end{align*}\)

\(f : \begin{align*}
\text{pre} & : \top \\
\text{post} & :
\end{align*}\)

\(a\)

\(b\)

\(M \otimes \mathcal{E}\)

\(we : \emptyset\)

\(wf : \{p\}\)

\(uf : \emptyset\)

\(a\)

\(b\)
Dynamic Epistemic Logic: DEL presentation \((M, w), E\)
(Baltag et al. 1998, van Ditmarsch et al. 2007)

\(M\) an epistemic model

\(w : \{p\}\)

\(u : \emptyset\)

\(a\)

\(b\)

\(f\)

\(M \otimes E\)

\(we : \emptyset\)

\(wf : \{p\}\)

\(uf : \emptyset\)

\(a\)

\(b\)

Gaëtan Douéneau-Tabot Sophie Pinchinat François Schwarzentruber
Dynamic Epistemic Logic: DEL presentation \((\mathcal{M}, w), \mathcal{E}\)

(Baltag et al. 1998, van Ditmarsch et al. 2007)

\(\mathcal{M}\) an epistemic model

\(\mathcal{M} \otimes \mathcal{E}\)

\(\mathcal{M}, w \not\models K_a \neg p\)
Dynamic Epistemic Logic: DEL presentation \((M, w), E\)
(Baltag et al. 1998, van Ditmarsch et al. 2007)

\(M\) an epistemic model

\[\mathcal{M} \otimes \mathcal{E}\]

\(\mathcal{M}, w \not\models K_a \neg p\), but \(\mathcal{M}, w \models \langle \mathcal{E}, e \rangle K_a \neg p\)
Dynamic Epistemic Logic: DEL presentation \((\mathcal{M}, w), \mathcal{E}\)
(Baltag et al. 1998, van Ditmarsch et al. 2007)

\(\mathcal{M}\) an epistemic model

\(\mathcal{M} \otimes \mathcal{E}\)

\(\mathcal{M}, w \not\models K_a \neg p\), but \(\mathcal{M}, w \models < \mathcal{E}, e > K_a \neg p\)

\(\mathcal{M} \otimes \mathcal{E}, we \models K_a \neg p\)
Epistemic planning

Epistemic planning

\[
\begin{align*}
\textbf{Input:} & \quad \text{DEL presentation } (M, w), \mathcal{E}, \text{ epistemic formula } \psi \\
\textbf{Output:} & \quad \text{Is there } e_1, \ldots, e_n \text{ in } \mathcal{E} \text{ s.t. } M \mathcal{E}^n, we_1 \ldots e_n \models \psi? \\
\end{align*}
\]

UNDECIDABLE by (Bolander et al. 2011, Yu et al. 2013)

Automatic structures, chain Monadic Second-Order logic, Epistemic planning.
Propositional DEL presentations

Events have **propositional preconditions**

\[
\begin{align*}
 e : & \quad \text{pre} : \text{formula} \in \text{Bool}(AP) \\
 & \quad \text{post} : p \leftarrow \bot
\end{align*}
\]

\[
\begin{align*}
 f : & \quad \text{pre} : \text{formula} \in \text{Bool}(AP) \\
 & \quad \text{post} :
\end{align*}
\]

Theorem (Maubert et al. 2014)

Propositional DEL structures \(\in \text{RegAutTrees} \).
Epistemic planning for PDEL specifications

Corollary (Maubert et al. 2014, AiML2018)

Epistemic planning is decidable for propositional DEL presentations.

- On the PDEL structure, model check the property $\exists x \varphi_G(x)$.
- Automaton $A_{\varphi(x)}$ provides all solution plans, since the encoding of nodes in the PDEL structure is the sequence of events that has led to that node, i.e. the plan.

Corollary

The set of solution plans is a regular language regular.

- One can exploit $A_{\varphi_G(x)}$ to decide other properties, e.g. if there are infinitely many plans.
Outline

1 Motivation

2 Model checking on automatic structures

3 Regular automatic trees

4 Application: Epistemic planning
 - Dynamic Epistemic Logic
 - Logics of knowledge and time
Motivation
Model checking on automatic structures
Regular automatic trees
Application: Epistemic planning

Dynamic Epistemic Logic
Logics of knowledge and time

Gaëtan Douéneau-Tabot Sophie Pinchinat François Schwarzentruber
Automatic structures, chain Monadic Second-Order logic, Epistemic planning
Logics of knowledge and time (Halpern-Vardi 1989)

The models are particular trees $\mathcal{T} = \langle D, r, S_1, \ldots, S_n, K_1 \ldots K_m, (p)_{p \in AP} \rangle$

- time progress is given by $S := \bigcup_{i=1}^{n} S_i$ (temporal logics, CTL, etc.)
- atomic propositions in $AP = \{p, q, \ldots\}$ are unary relations
- knowledge modalities $K_1 \ldots K_m$ are binary relations.

Write $cMSOK$ for $cMSO[r, S_1, \ldots, S_n, (p)_{p \in AP}, K_1 \ldots K_m]$

Corollary

Model checking on RATs against any of these logics is decidable.