Relating plays in game arenas

Sophie Pinchinat
LogicA/IRISA, University of Rennes 1

Dagstuhl 17111
March 12-17, 2017
Models for Dynamics

Transition systems \sim Computation trees (unfold)

Game arenas \mathcal{G}

Game trees $\mathcal{T}_{\mathcal{G}}$ (unfoldings)

Turned-based game arenas, Concurrent game structures, Plants (in control theory), Domains (in automated planning) ...
Logics for Strategic reasoning

Game trees \mathcal{T}

On the basis of temporal logics LTL, CTL, CTL*, L_μ, ...

Logics for strategic reasoning:

- Built-in formalisms: ATL, ATL*, AMC, ATL_{sc}...
- Strategies as FO objects: SL, variants of SL...
- Strategies as SO objects: MSO, QL_μ, BisimQL_μ, ...
Game trees

Game trees \mathcal{T}
Game trees

What is a node label? $\ell \in 2^{Prop}$

Game trees \mathcal{T}

Linear-time Logic and Branching-time Logic, LTL, CTL, CTL*
Game trees

What is an edge label?
\(\alpha \in \text{Act} \)

Game trees \(\mathcal{T} \)

Propositional modal logics PDL, \(L_\mu \)
Game trees

What is an edge label?

\[\alpha \in \text{Act} \]

\[\vec{j} \in \text{Moves}_1 \times \text{Moves}_2 \times \ldots \times \text{Moves}_N \]

Game trees \(\mathcal{T} \)

Propositional modal logics PDL, \(L_\mu \)
Alternating-time Logics, ATL, ATL\(^*\), ATL\(\text{sc} \)
Adding uncertainty in the game trees

- Epistemic temporal logics: LTLK, CTLK, \(L_\mu K \)...
- Strategy logics with imperfect info: ATL\(_i\), SL\(_i\), ESL...

Common feature:
Indistinguishability relation on finite paths of game arenas
- memoryless, bounded memory, perfect recall
- synchronous, asynchronous...

Role:
- Give a semantics to the knowledge modality
- Constraint the class of strategies to reason about

For instance: would you be able to tell if ATL\(_i\) \(\prec \) L\(_\mu\)K? But for which semantics of K? Memoryless should work ... hum!

Considering relations between paths in game arenas shed lights on the landscape of strategic logics mixing time and knowledge.
Adding uncertainty in the game trees

- Epistemic temporal logics: LTLK, CTLK, $L_{\mu}K$...
- Strategy logics with imperfect info: ATL, SL, ESL...

Common feature:

Indistinguishability relation on finite paths of game arenas
- memoryless, bounded memory, perfect recall
- synchronous, asynchronous...

Role:
- Give a semantics to the knowledge modality
- Constraint the class of strategies to reason about

For instance: would you be able to tell if ATL $\prec L_{\mu}K$? But for which semantics of K? Memoryless should work ... hum!

Considering relations between paths in game arenas shed lights on the landscape of strategic logics mixing time and knowledge.
Adding uncertainty in the game trees

- Epistemic temporal logics: LTLK, CTLK, $L_\mu K$...
- Strategy logics with imperfect info: ATLi, SLi, ESL...

Common feature:

Indistinguishability relation on finite paths of game arenas

- memoryless, bounded memory, perfect recall
- synchronous, asynchronous...

Role:

- Give a semantics to the knowledge modality
- Constraint the class of strategies to reason about

For instance: would you be able to tell if ATL$^i \prec L_\mu K$? But for which semantics of K? Memoryless should work ... hum!

Considering relations between paths in game arenas shed lights on the landscape of strategic logics mixing time and knowledge.
Adding uncertainty in the game trees

- Epistemic temporal logics: LTLK, CTLK, $L_\mu K$...
- Strategy logics with imperfect info: ATL$_i$, SL$_i$, ESL...

Common feature:

Indistinguishability relation on finite paths of game arenas

- memoryless, bounded memory, perfect recall
- synchronous, asynchronous...

Role:

- Give a semantics to the knowledge modality
- Constraint the class of strategies to reason about

For instance: would you be able to tell if ATL$_i \preceq L_\mu K$? But for which semantics of K? Memoryless should work ... hum!

Considering relations between paths in game arenas shed lights on the landscape of strategic logics mixing time and knowledge.
Adding uncertainty in the game trees

- Epistemic temporal logics: LTLK, CTLK, $L_\mu K$...
- Strategy logics with imperfect info: ATL$_i$, SL$_i$, ESL...

Common feature:

Indistinguishability relation on finite paths of game arenas

- memoryless, bounded memory, perfect recall
- synchronous, asynchronous...

Role:

- Give a semantics to the knowledge modality
- Constraint the class of strategies to reason about

For instance: would you be able to tell if ATL$_i \prec L_\mu K$? But for which semantics of K? Memoryless should work ... hum!

Considering relations between paths in game arenas shed lights on the landscape of strategic logics mixing time and knowledge.
Adding uncertainty in the game trees

- Epistemic temporal logics: LTLK, CTLK, L$_{\mu}$K…
- Strategy logics with imperfect info: ATL$_i$, SL$_i$, ESL…

Common feature:

Indistinguishability relation on finite paths of game arenas

- memoryless, bounded memory, perfect recall
- synchronous, asynchronous…

Role:

- Give a semantics to the knowledge modality
- Constraint the class of strategies to reason about

For instance: would you be able to tell if ATL$_i$ \preceq L$_{\mu}$K? But for which semantics of K? Memoryless should work … hum!

Considering relations between paths in game arenas shed lights on the landscape of strategic logics mixing time and knowledge.
Available information is Prop and Moves.

A play is a word in $\Pi = 2^{\text{Prop}}(\text{Moves} \times 2^{\text{Prop}})^*$

e.g., $\{p, q\}m_1\{p\}m_1\{p, q\}$
Relating plays in game arenas over $Prop$ and $Moves$,

$$\Pi = 2^{Prop}(Moves \times 2^{Prop})^*$$

$$\leadsto \subseteq \Pi \times \Pi$$

an *indistinguishability* relation for some agent.
Relating plays in game arenas over \(\text{Prop} \) and \(\text{Moves} \)

\[
\Pi = 2^{\text{Prop}}(\text{Moves} \times 2^{\text{Prop}})^* \]

\[\xRightarrow{\sim} \subseteq \Pi \times \Pi\]

an indistinguishability relation for some agent.

Take the node \(x \in \mathcal{T} \)

\[
\text{trace}(x) = \{p, q\}m_1\{p\}m_1\{p, q\}
\]

Say that \(x \xRightarrow{\sim} y \) if \(\text{trace}(x) \xRightarrow{\sim} \text{trace}(y) \)
Relating plays in game arenas over \textit{Prop} and \textit{Moves}

\[\Pi = 2^{\textit{Prop}}(\textit{Moves} \times 2^{\textit{Prop}})^* \]

\[\bowtie \subseteq \Pi \times \Pi \]

an \textit{indistinguishability} relation for some agent.
Relating plays in game arenas over $Prop$ and $Moves$

$$\Pi = 2^{Prop}(Moves \times 2^{Prop})^*$$

$$\preceq \subseteq \Pi \times \Pi$$

an *indistinguishability* relation for some agent.

$$\{p, q\}m_1\{p\}m_1\{p, q\} \preceq \{p, q\}m_1\{p\}m_1\{p\}$$

a synchronous perfect recall agent, who only observes p
Extension of game trees

Just as abstractions of interpreted systems, i.e., the models of ETL
Extension of game trees

The framework of e.g., L_μ is extended as the jumping μ-calculus

L_μ

$\varphi ::= X \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \mu X. \varphi(X) \mid \Diamond \varphi$

where $p \in Prop$ and $m \in Moves$.
Extension of game trees

The framework of e.g., L_μ is extended as the jumping μ-calculus

L_μ

$\varphi ::= X \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \mu X. \varphi(X) \mid \diamond \varphi$

where $p \in Prop$ and $m \in Moves$.

It captures all epistemic temporal logics.

Jumping Alternating Tree Automata $\equiv L_\mu$ [Maubert+P. 2013]
Extension of game trees
Extension of game trees

Remarkable classes of relations

- \(\sim \) is rational if recognized by a 2-tape automaton.
- \(\sim \) is regular if recognized by a synchronous 2-tape automaton.
- \(\sim \) is recognizable if a word automaton suffices:
 \(\{u \# v \mid u \sim v\} \) is a regular language.

<table>
<thead>
<tr>
<th>Recognizable</th>
<th>(\subsetneq)</th>
<th>Regular</th>
<th>(\subsetneq)</th>
<th>Rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cup)</td>
<td></td>
<td>(\cup)</td>
<td></td>
<td>(\cup)</td>
</tr>
</tbody>
</table>

Bounded memory \(\subseteq \) Perf rec synch. \(\subseteq \) Perf rec asynch.
Known results for game trees

- \(L^{\mu} \preceq \text{MSO}^\preceq \), and \(L^{\mu} \) is invariant under bisimulation.
- If \(\preceq \) is recognizable, \(\text{MSO}^\preceq_{\text{bisim}} \equiv \text{MSO}^\preceq_{\text{bisim}} \equiv L^{\mu} \).
 Therefore, \(\text{ATL}_i \preceq L^{\mu} \). But no idea of the effective translation, as the expansion law for fix-points does not apply already for memoryless semantics [Bulling+Jamroga 2011]

Theorem [Dima+Maubert+P. 2015]

There is a regular relation \(\preceq \) for which \(L^{\mu} \prec \text{MSO}^\preceq_{\text{bisim}} \).

Proof: the property is “the existence of a winning strategy for (blind) Player 0 in an imperfect information reachability game for synchronous perfect recall”.

Corollary (from the proof)

When \(\preceq = \text{synchronous perfect recall}, \text{ATL}_i \not\preceq L^{\mu} \).
Back to the class of game trees: generalities

Proposition

For G a finite game and \rightarrow regular, T_G is an **automatic structure**.

Namely, the nodes of T_G can be encoded as finite words over some finite alphabet Σ, and the relations (here \downarrow and \rightarrow) can be described by synchronous automata.

Corollary (of Blumensath 1999)

The FO theory of T_G is decidable.
Back to the class of game trees: generalities

Proposition

For \(G \) a finite game and \(\rightsquigarrow \) regular, \(T_G \) is an automatic structure.

Namely, the nodes of \(T_G \) can be encoded as finite words over some finite alphabet \(\Sigma \), and the relations (here \(\downarrow \) and \(\rightsquigarrow \)) can be described by synchronous automata.

Corollary (of Blumensath 1999)

The FO theory of \(T_G \) is decidable.
Proposition

For \mathcal{G} a finite game and \leadsto regular, \mathcal{T}_G is an automatic structure.

Corollary (of Blumensath 1999)

The FO theory of \mathcal{T}_G is decidable.

Proposition

\mathcal{T}_G is even a regular automatic tree (*).

(*) With the most natural encoding, ie the traces $we_1e_2\ldots e_n$.
DEL structures are game trees

\[(M, E) \text{ a DEL presentation } \sim \mathcal{T}(M, E) \text{ (one-player game tree).}\]

Intrinsically synchronous (\(\sim\) is horizontal)

Definition

\(E\) is propositional if for every \(e \in E\), formula \(\text{pre}(e)\) is propositional. \(E\) has effects if for some \(e \in E\), \(\text{post}(e)\) is not trivial.
Proposition (Douéneau+P.+Schwarzentruber 2016, Aucher+Maubert+P. 2014)

If \mathcal{E} is propositional, then $T_{(\mathcal{M},\mathcal{E})}$ is a regular automatic tree.

Corollary

The DEL planning problem is decidable for propositional \mathcal{E}, and translating the goal φ into $\hat{\varphi}(x) \in FO$ gives the set of all plans.

Theorem (Douéneau 2016)

The MSO_{chain} theory of $T_{(\mathcal{M},\mathcal{E})}$ is decidable.

Corollary

The DEL protocol problem for MSO_{chain}-definable goals is decidable. This captures $CTL^* K_n$.
Less predictable $\mathcal{T}_{(\mathcal{M}, \mathcal{E})}$: non-propositional \mathcal{E}

\mathcal{E} has $md = k$ (resp. $ad = k$) depth k if for every $e \in \mathcal{E}$, $md(\text{pre}(e)) \leq k$ (resp. $ad(\text{pre}(e)) \leq k$) and equals k for some e.

Corollary (of Bolander+Anderson 2011)

For \mathcal{E} with $md = 1$ and effects, $\mathcal{T}_{(\mathcal{M}, \mathcal{E})}$ can be non-automatic.

Corollary (of Charrier+Maubert+Schwarzentruber 2016)

For \mathcal{E} with $alt = 2$, $\mathcal{T}_{(\mathcal{M}, \mathcal{E})}$ can be non-automatic.

Open

The case \mathcal{E} with $md = 1$ and no effects.

- For \mathcal{E} public announcements, $\mathcal{T}_{(\mathcal{M}, \mathcal{E})}$ is a regular automatic tree.
- Context-free, context-sensitive natural encodings $we_1e_2 \ldots e_n$, but $\mathcal{T}_{(\mathcal{M}, \mathcal{E})}$ might be automatic for another encoding ...
Wrap up

- Classes of game trees are central mathematical objects.
- Decidable fragments of MSO (SO quantification provides the strategy quantifiers).
- The subclasses of automatic structures, that we called regular automatic trees, might be a track to follow.

The End of the Beginning
Classes of game trees are central mathematical objects.
Decidable fragments of MSO (SO quantification provides the strategy quantifiers).
The subclasses of automatic structures, that we called *regular automatic trees*, might be a track to follow.

The End of the Beginning