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Abstract. The emerging technology of interacting systems calls fav far-
malisms to ensure their reliability. Concurrent games amagigmatic abstract
models for which several logics have been studied. Howekierexisting for-
malisms show certain limitations in face of the range oftetyp properties re-
quired to address intuitive situations. We propose a gersaifution to specify
expressive constraints on strategies in concurrent ga@asformalism natu-
rally extends alternating-time logics while being highlgxible to combine con-
straints. Our approach is constructive and can synthesiasy types of complex
strategies, via automata-theoretic techniques.

1 Introduction

Computer-system design currently relies on complex askgeb ofinteracting com-
ponentsvhich communicate and share resources in order to achieviesg The com-
binatorics of such systems is so enormous that the develupofieadequate formal
methods to ensure their reliability has become a majorehgé. In this context, games
are paradigmatic for providing expressive mathematicale®of interactive systems,
reflecting their operational semantics and offering adegjteasoning tools. In order
to reason formally about interactive models, it is necesgadevise appropriate spec-
ification languages in which the desirable behaviors of fletesn can be stated; once
the properties are formulated, methods for automated watidin and synthesis can be
employed to support the design process.

In the past decade, extensions of state-transition basel&lsyasuch a£oncur-
rent Game StructurepAHKO02] which extend Kripke structures, have raised consid
erable interest in virtue of offering mathematical setting address formal analysis
of complex systems. At the same time, alternating-timedeguch as\TL, ATL*,
AMC and GL [AHKO02] have been proposed as a natural extension of stdnigan-
poral logics to the multiplayer setting. Noticeable theioad and practical results ex-
ist for these logics, such as effective decision procedwiéis reasonable cost for
ATL [vD03,KP04,GvD06,SF06,LMOO07], and implementations [HEEAJAIS"06].
However, it should be made clear that alternating time gimw certain limitations in
face of the range of strategy properties required to addinessive situations. For ex-
ample, communication protocols often require to considenéss assumptions, which
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enable to exclude some undesirable computations of theraySWhen such assump-
tions are not expressible in the logic, non trivial effonte aeeded to impose the con-
straints directly in the models [AHKO0Z2]. By this type of appch, only very dedicated

kind of analysis can be performed, and often, a minor addiflmew constraints com-

pels the user to re-design its problem from scratch. Heinegetis a need for a for-

malism where constraints on strategies can be combinedr @tamples of limitations

can be borrowed in solution concepts for non-zero sum gafsefar as we are con-

cerned, uniqueness of a Nash equilibrium [Cha05], or dondeaf strategies [Ber07]

cannot be expressed in any respect, because the formalsmat dhave strategies as
main objects.

In this paper, we propose a generic constructive soluti@amédyze the strategies of
concurrent games. Our formalism is tuned to specify at tiheestime the strategies,
their properties (e.g. fairness), and their objectives mndied framework. Expres-
sive constraints can henceforth be formulated; for examlptbe limitations discussed
above are overcome. Moreover, all the concepts for nonzemogames considered by
[CHPO7] can be captured, since we can express Strategy [8g)dn our formalism;
notice that SL is limited to turned-based arenas, whereeaaseeconsider general con-
current game structures, and SL is not powerful enough toesspe.g. it cannot express
the Alternating Mu-Calulus [AHK02]. We start from the logi2,,, a traditional propo-
sitional mu-calculus [Koz83], augmented widkcision modalitiesBy the semantics of
the logic, the game is unfold into an infinite tree. The pugoakdecision modalities is
to specify particular monadic predicates over the nodeb@tbmputation tree of the
game, to establish a one-to-one correspondence betwesngasicular predicates and
the strategies of sets of players; the outcome of a stratetheisub-tree whose nodes
form the predicate, and still is a concurrent game, but vatis players.

Objectives of strategies can be amyregular property. In essence, strategies to-
gether with their objectives have assume-guaranteavor: by assuming that a cer-
tain strategy is adopted, we guarantee some temporal pyayféis outcome. From this
point of view, we operate on the model (by applying the sg@tend leave the prop-
erty intact, as done in [CHPQ7]. In order to decrease thécanty of the problem, we
propose a powerful although simple mechanism to operateelogic side while leav-
ing the models intact; it is calle@lativization The benefit is to transform the complex
assume-guarantee statement into a mere temporal statebwaritthe model.

Following the original idea of [RP03] for controller syngie problems, we define
the logicQD,, a monadic second order extension/®f, but where fix-points and quan-
tifiers can arbitrarily interleave. Our calculus is thenipged to quantify over strate-
gies, as we show, in a highly expressive manner. In particiilsubsumes alternating
time logics, while being amenable to automata construstibance to an effective pro-
cedure to synthesize the strategies.

The paper is organized as follows: we present the models ¢tiche2, and the
logic in Section 3 Strategiesandoutcomesare defined in Section 4, followed by the
relativizationprinciple. Section 5 is dedicated to significant exampleegical speci-
fications. Section 6 describes automata constructiong £gr. We complete the work
by the embedding of alternating-time logics into our sys{&ection 7), and a note on
a customized automata construction for these logics.



2 The models

In the following, we assume an infinite countable ordere®set{p, p’, .. .} of players,
and an infinite set otomic proposition®rop = {Q, Q1,Qo,...}. Finite setsC' of
players areoalitions For any integei > 1, let[i] denote the sefl, ..., i}.

A Concurrent Game Structu(€GS) overd andM is atupleS = (11, S, A, A\, M, d),
where:

— II C P is a non-empty finite set gilayers whose cardinal is denoted by we
may represent the ordered gétby the natural numbers ... n.

— Sis a set ofstates with typical elements of writtens, s/, .. ..

— M is a set oimovesEachj € M is a possiblenoveavailable in each state to each
playerp € II. A decision vectois a tuplex = (j1,...,7n) € M™, wherej, is a
move ofp € I1. The valueCard(M )™ is thebranching degreef S.

—6:59%x M™— Sis thetransition functiongiven a state € .S and decision vector
(41, - --,Jn), the game moves to the stales, z). Eachd(s, z) wherex € M™ is a
successoof s, and successors efform the setSucc(s).

— A C Prop, and\ : A — 29 labels states by propositions. A statés labelled
by @ € A whenevers € Q). We let A(Q) := [ A(Q), for any set of
propositions? C A.

Comparing this with the original definition of [AHK02], we maotice the following:

1. We use the same set of moves for all players, independgfrthe current state.
2. Each player moves independently of the others.
3. Players make concurrent choices in each state.

However, the proposed models are expressive enough toreghaiessential features
of concurrent games, as we can actually simulate any cosrtigame: In general, each
player in a current state has a sef\/? of moves. We can simulate this situation with
a unique set of moved! by renaming the moves it/? and by qualifying some states
dummythe logical statements need being interpreted on theaetgart of the models,
namely on computations which do not encounter dummy sthieisce Points 1 and 2
are not restrictive. Since we can restrict players’ set of@sdrom a given state, enforc-
ing all but one player to have a single choice simulates tiHreesed games; this sorts
out Point 3. Notice that asynchronous games are also capfotewing [AHK02], we
designate a particular playschedulewhich in every state selects one of the players;
the latter then determines the next state. Now, the crusglraption that the scheduler
fairly selects the players can be expressed in the logicppesed to [AHK02] where
fairness is defined in the models.

Givens € S,p € II, andj € M, we letSucc;(s,p) C Succ(s) be the set of
successors of which can be enforced by the moyeof playerp; formally, it is the
set of states of the for@(s, (j1, ..., j.)) with j, = j. Consider the classic two-player
gamePaper, Rock, and Scissors (PR)depicted in Figure 1: the possible moves of

each player range ovéd = { P, R, S} for “paper”, “rock” and “scissors” respectively.



1-Win 2-Win 2-Win 1-Win 1-Win 2-Win
Q Q Q

Fig. 1. The Paper, Rock, and Scissors game

The propositions 1-Win and 2-Win indicate who is the winnethe current config-
uration; let us ignore propositio for the moment. In this game§uccs(so,2) =
{s3, s6, s9} is the set of successors af player2 can enforce by playings”. We let
SuccSets(s,p) C 29uc(®) pe the set of alSucc;(s,p) wherej € M, composed of
sets of successors efwhich can be enforced by some move of playein PRS,
SuccSets(so,2) = {{s1,S4,57}, {52, 55,53}, {53, 56,59} }. Since a playep ¢ II
cannot influence the game, we take the conventionShat:Sets(s, p) = {Succ(s)}.
Given a coalitiorC' ands € S, aC-move froms is an element ofy,cc SuccSets(s, p);

it is a subset ofSucc(s) which elements result from fixing a particular move for each
playerinC. In PRS, &1, 2}-move fromsg is {s; }, for somel < < 9.

3 The logical framework

We propose a generalization of [RP03] which is twofold: wei@nthe propositional
mu-calculus [Koz83] by allowindecision modalitiesand we consider its monadic sec-
ond order extension by allowing quantifications over atopr@positions, even under
the scope of fix-points operators. We first present the pitpoal mu-calculus with
decision modalities; the second order extension followtkig section.

The logicD,, is the mu-calculus witllecision modalitiegformulasc, Q). Given
a setProp of atomic propositions, an infinite s&, and a set of variable¥ar =
{Z,Y,...}, the syntax oD, is:

Qlop QI T8V B2 |EXB|Z|nZ.3(Z)

where() € Prop,p € P, Q C Prop, andg, 51, 3» are D, formulas. Fix-point for-
mulas («Z.3(Z)) are such that any occurrence fc Var in 5(Z) occurs under an
even number of negation symbets A sentencés a formula where any occurrence of
a variableZ occurs under the scope of@ operator. The set of formulas which do not
contain any decision modality correspond to the traditipmapositional mu-calculus,



whence the standard notatiohsAX 3, 51 A (B2, f882, andvZ.3(Z) for respectively
-1, "EX —a, ~(—f1 V —f2), 61 V B2, and—uZ.—~3(~Z). Moreover, givers € D,,,
we freely use the conciserL-like notationAG () for vZ.(5 A AX Z), which ex-
presses that is globally true in the future, anBF (3) for ~AG (—3).

As for the traditional mu-calculus, a formutac D, is interpreted in a CGS =
(11,8, A, \, M, §) supplied with a valuational : Var — 2°. Its semanticg 3 %! is a
subset of5, defined by induction over the structure@fThe following is very standard
as the mu-calculus operators semantics:

[Q]s' = {S €SlseXQ)}

[[T Hval
[[ Hval S\ [[ﬁ]]val
[BV B3] =161 U6 ]
[Z]$" =val(Z)
[EXB]8 ={s € S|3s' € Succ(s) A 8" € [B]2'}

[1Z.8(2) & =n{S' C S|[B(2) [P c 57}

Classically, as a valuatioral does not influence the semantics of a sentgheeD,,,
we then simply writd 5 |s.
We now focus on decision modalities which are essential tdamic:

[0,Q]8 ={s € S|Succ(s) N N(Q) € SuccSets(s,p)}

By definition,s € [ ¢,Q ]s whenever the sefucc(s) N {A(Q)|Q € Q} can alter-
natively be characterized as a move of playemamely asSucc; (s, p) for some move

j € M. Notice that the semantics of, Q is well defined even ip ¢ II, since in this
caseSuccSets(s, p) equals{ Succ(s)} by convention. In most of our examples, the set
Q has a single elemen, so we simply write>, () for ¢, {Q}.

In the example of the PRS game, Figuresd ¢ [ ¢1(1-Win) |s because the pred-
icate 1-Win does not match a set of successors enforced bya aigplayerl; as a
matter of fact, playet does not have a winning strategy, neither does player sym-
metrical reasons. On the contragy€ [ ¢1Q | s, since@ matchesSuccs(so, 2). When
the game is infinite, eg by repeating the game PRS, it can baded as an infinite
tree, the nodes of which are histories of an ongoing playusgsgiven a predicat@
on the tree nodes such thagiQ is invariant in the computation tree, that is such that
AG (¢,@) holds in the root. Then any computation insigecorresponds to a play for
a fixed strategy of playes, namely the one designated fy and the sub-tree formed
by these computations is the outcome of this very strategmtéining decision modal-
ities for several players characterizes coalition mowasnfstance, when a formula like
op, Q1A 0p, Q2 N0y, Q3 holds, then the set of successors which satisfy. Q2 A Q3 cor-
responds to some move of the coalitign , p», ps }. By extension, if each predicatg
designates a strategyof, the sub-tree whose computations remain inglde Q2 A Qs
is the outcome of the coalition strategy.

The logic is extended to the monadic second order to captategies as main ob-
jects of the logic: stating that there exists a predi¢agichAG (¢,(Q) holds expresses
the existence of a strategy. This extension of the logic itewQD,,, for “quantified



D, its syntax is as fotD,, but with quantifications over sets of atomic propositions.
The syntax oD, is:

Qlop Q| T|-a|lanVas | EXa| Z|uZ.a(Z)]30.«
We writeVQ.« for -39.—au.

The semantics oD, generalizes the one db,,: the cases of), ¢,Q, T, —a,
a1 Vag, EX o, Z, anduZ.a(Z) are dealt inductively. The semantics of quantification
follows the proposal of [RP03]: the mechanism to define nesdigates) € Q on a
game structure relies on a composition of the structure avkhipke structure ove@,
called alabeling

1,2,4,5,7,8

Fig. 2. A Q-labeling(&,r) of degreed

Definition 1. (Q-labelings)GivenQ C Prop andm > 1, a Q-labeling(or a labeling
over Q) is a pair (€,r) where€ = (E, Q,~,[m],d’) is a (one player) CGS structure
overQ and[m], andr € E is its root. It is a Krikpe structure.

We compose labelings and CGS’s with the same branching eedfe suppose fixed
once for all a principle to bijectively relate any set of tberh M ™ to the sefCard(M)"]
(recall itis {1,...,Card(M)™}); for example one can use the coding proposed by
[GvDO06]. In the following, let us qualifganonicala bijection fromM ™ to [Card(M)™]
whenever it is based on this principle.

Now assume given a rooted CGS, s) with n players overl andM, and a labeling
(&,r) over Q and[Card(M)"], where€ = (E, Q,~,[Card(M)™],d"); denote byr
the canonical bijection from/™ to [Card(M)™]. Thelabeling of(S, s) by (€, 7) is the
synchronous product of the two structures, wheiteansitions inS are synchronized
with the 7 (x)-transitions inf. Formally,

(S,5) x (£,7) = (I1,S x E,AUQ, (A x7),6")
is the CGS overl U Q and M rooted at(s, r), where:
- (AxY)(Q) = ANQ)U~(Q), for each)) € AU Q with the convention thatif) ¢ A

(or ¢ Q) then\(Q) (respectivelyy(Q)) is the empty set, and
— 6 ((s1,e1),x) = (s2,e2) wheneved(sy, x) = sp andd’(e1, 7(z)) = ea.



In the following, composition of a structure with a labelimgplicitly assumes that
their branching degrees match. Figure 1 shows a (regulae)ifey (£,r) over@ and
[3?], and the labeling of the game structure PRS(Byr), with the convention that
T((P,P)) = 1,7((P,R)) = 2, ...,7((S, R)) = 8, and7((S,S)) = 9. The result is
depicted in Figure 1.

Notice that since propositions of compound states accusydad becausgéandS
have the same branching degrg®, s) x (£, r) is bisimilar to(S, s) in the usual sense,
if we restrict to propositions that are notdh In particular ifQ is empty,(S, s) x (€, )
is bisimilar to(S, s). The composition of and labelings is tedious but it only aims at
formalizing the means to decoration nodes of the computate®e by propositions; in
particular, whert is a finite stateQ-labeling, the predicateg are regularly placed on
the computation tree of the game structure.

We have now the material to define the meaning of quantifiers: [ 3Q.« |2 if
and only if there exists &@-labeling (&, r) such that(s,r) € [« ]](gl’/s)x(&r), where
val'(Z) = val(Z) x E.

Remark that formulas apD,, have the same truth value if we unravel the structure
S. Besides, the semantics of quantified formulas is a lot murétive on the compu-
tation tree3Q.a holds if there is a way to assign the propositionguto the nodes of
the computation tree so thatholds.

4 Strategies and Outcomes

In this section, we assume a fixed C&S= (11, S, A, A\, M, 0).

We revisit the central concepts strategiesand outcomesvhich underlies the se-
mantics of all logics for CGS’s: as already explained in ®&c8, giving a strategy of
playerp is equivalent to labeling the structure by some proposifjowhere the prop-
erty o, is invariant. Since invariance is definable in the logic, wéa the following
definition for strategies:

Definition 2. (Strategies)Given a coalitionC' C 17, and a se{Q, |p € C} C Prop,
a C-strategy froms designated by{Q, |p € C} is a labeling(&,r) of (S,s) over
{Q, |p € C}, such that

(877n) € [[AG ( /\ QPQP) ]](S,S)X(S,r) (1)
peC

For eachC-strategy(&, ) from s designated by a s&¢ = {Q, |p € C}, where
& = (F,9,v,[m],¢"), we define itsoutcomeas the structure obtained by forgetting
all states(s’, e) which are not chosen by the coalitigiy, hence not in the predicate
/\pec Q. and by forgetting the players &f as their moves are fixed by the strategy.
Formally, assuming’ # (), we defineouT(Qc¢,S,s) = (II \ C,(S x E) N (X x
NQ), AU Q, M, 0", with 6" ((s1,e1),y) = 0((s1,€e1),y") wherey’ is the decision
vector of players i 7 obtained by completing the decision vecyaf players inil \ C
by the moves of the players ifi recommended by th€'-strategy. IfC' = () then as
expectedUT(Qy, S, s) = (S, s).



Lemmal. ouT(Q¢, S, s) is a CGS (rooted at) over the set of player& \ C.

Our definition of outcome is sensible as the set of maximdpaouT(Q¢, S, s)
coincides with the original definition of 'outcome’ in therse of [AHK02]. However,
because our notion retains the structure of a game, cortvahe original definition,
we can state any logical statements anew.

In the following, and when it is clear from the context, we plynsay “Q-strategy”
for“C-strategy designated ", and we write@),, for Qy,,,. Also, we concisely write

Q for Ageo Q and define\ ., Q@ asT.

We present now a simple mechanism called réativizationwhich transforms a
formula by propagating downward in the formula a set of atopnopositions.

Definition 3. (Q-Relativization of a formula) For @ C Prop, the Q-relativizationis
a mapping(|Q) : QD,, — QD,, defined by induction:
(QQ)= (T1Q) = (Z1Q) =
(malQ) = ﬂ(aIQ) (a1 Van|Q) = (allQ) (a2|Q)
(n2.a(2)|Q) =pZ.((2)|Q)  (3Q".0|Q) =3Q".(c]Q)
(0pQIQ) = <>p(Q ANQ)  (EXa|Q)=EX[Ageo QN (alQ)]

From the above definition, we immediately obtain the eqeneaés:

(@) =a and (o|QU{Q}) = ((1Q)IQ). 2

Regarding properties brought about by strategies, Thearbetow shows that we
can either operate on the model, by considering the outcomexamine its property,
or else operate on the formula, by considering the relatfion and interpret it on the
structure:

Theorem 1. Given a rooted CG&S, s), a coalitionC', and aQ-strategy(€, ) from
s, we have: for anyx € QD,,, and any valuatiorval : Var — 2°:

[ (a]Qc) ]](s S)X(E,r) = =[a ]]\(])%T(QC,S s)
whereval’ (Z) = val(Z) x E.

Proof. The proof of Theorem 1 is conducted by a double induction ers#iC' and on
the structure ofv. The case&” = () is trivial and independent af, since(a|Q¢) is a by
(2), on the one hand, an&, s) x (£,r) andouT(Q¢, S, s) are isomorphic td4S, s),
on the other hand. Assume n@w= C’' U {p}, with ¢ ¢ C. The Q¢ -strategy(&, r) can
be decomposed intE’, ') x (&,,r,), where(&’, ') is aQ¢r-strategy andé,, ) is
aQ,-strategy; let us writéS’, ') for (S, s) x (&',7'). By (2):

[(1Q0) 1&gy ery = [ ((21Qc)IQp) T oy ey ) 3)

Lemma 2. For any rooted CGS3S’, s'), any{p} strategy(£ r) designated b@ any
a € QD,,, and any valuatioval : Var — 2%, [ (a|Q) I8/ o) x ey = [[a]]OéT(Q’S’S)
whereval' (Z) = val(Z) x E.



The proof of this lemma is based on a simple induction ovefdhmulas, in the spirit

of [RPO3]. Informally, remark first that the relativizatigm inductively defined for all
formulas but those of the forlX «. The inductive cases of the lemma follow this line.
Regarding statements liKBX «, the lemma simply expresses that a successor exists
in the prune structureuT(Q, S, s) if and only if it already existed in the complete
structure and it was labeled I6y.

By Lemma 2, the right hand side of (3) is equal[téa | Qcr) [¥r(g s/, Since
ouT(Q,S’, s’) andouT(Q, S, s) x (€', r") are isomorphic, it is also equal to

[ (|Qcr) ]]B%,T(@s,s)x(gzm which by induction hypothesis coincides with

[a ]]Z)%'T(QOI OUT(Q.5,5),(s.r)) - BY definition of the outcomes, we have:

Lemma 3. Given two distinct coalitiong’;, Cy, and any twoQ,-strategies(&;, r;)
(2 € {1,2}),0UT(Qcyucs, S, s) andouT(Q¢,, OUT(Qc,, S, 8), (s,12)) are isomor-
phic.

Applying Lemma 3 to the terrﬁla]]\éa[lJ/T(QC/,OUT(Q,S,S),(S,TP)) yields[ a ]]g%TQC’&SY

which concludes the proof of Theorem 1.

Corollary 1. Given a CGSS, a coalitionC', and a sentence € QD,,. Consider a set
of fresh atomic proposition®- = {Q,, | p € C'} indexed over. The formula

300 [AG ( \ ¢,Qp) A (a]Qc)]
peC

characterizes the states from which there exists-autcome of S, s) satisfyinga.

Proof. By definition, there exists &@¢-labeling froms, (£,r) such that(s,r) is a
model of[AG (A ,cc ©pQp) N (a|Qc)]. Therefore,

(s,7) € [AG (/\ ©p@p) I(s.5)x(e.r)» aNd 4)
peC
(s,7) € [(a]Qc) [(s.5)%(£,r)- (5)

By (4), (£,r) isaQc-strategy. By Theorem 1, (5) is equivalentte [a]our(oc,s,s)s
which concludes. For the reciprocal, simply unroll the ceaisg backward.

We make strategies become the main objects of our logicngivepalitionC', and
asetQc = {Q, |p € C} of propositions, we define the following dual expressions:

3000 £'300.[AG (N @) hal  ¥Qc.a BTVQ0[AG (A Q) = a]

peC peC

By Corollary 1,§Qc.(a| Qc) expresses the existence o€astrategy which enforces
«. As widely demonstrated in the next section, statementsefdrm(«|Q¢) can be
combined, and associated with other types of statemerggg¥and (7)). Moreover the
propertya itself can incorporate specifications about other stragdience expressing
commitment (see (8)).
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5 Expressiveness issues

This section reveals the high expressiveness of the fosmaliVe present three signif-
icant properties we can express in our formalism, but, webe| in none of the other
logics developed for concurrent games so far. Let us simplieWo | Q1 A Q=) for
(]{Q1,Q2}), (Q = Q') for AG (Q < Q') to denote equality of predicates, and

(@ # Q") for~(Q = Q).

1. Unique Nash equilibrium inu-regular games@Given a two-player game, and an
w-regular objectives [Cha05], the existence of a Nash equilibrium can be stated

by 3Q1.3Qs. Equil (5, Q1, Q2), where

def (B1Q1 A Q2)
Equil(8,Q1,Q2) = { A\VQ5.(Q2 # Q5)=(—fQ1 A Q3)
AVQ1.(Q1 # Q)= (—61Q1 N Q2)

Uniqueness of the Nash equilibrium is specified by:
éQléQQEQUZl(ﬁa le QQ) A Unlque(EqUZl(ﬁ, Qla QQ)a Qla Q?) (6)

whereUnique(a, Q1, Q2) = YQ1.VQh.[a = (Q1 = Q) A (Q2 = Qb)].
2. Dominance of strategieBor instance, a strategy weakly dominates another strat-
egy @’ with respect to a goa# [Ber07] whenever (7) holds.

VR.[(BIQ' AR)=(BQ AR AIR[BIQAR) A (-BIQ'AR)]  (7)

3. Communication protocold8y another reading of Corollary 1, a formLﬂ@c.(od
Q) states the existence of&outcome fixed once for all in which is interpreted.
If o contains a quantified sub-formusQc..(o/|Qc ) (A € {3,V}), the statement
o’ is interpreted irC’-outcomes which lie “inside” the fixe@-outcome. Consider
a system with two processo#isandb which share a critical resource; we want to
specify a protocolutex in charge of achieving the mutual exclusion. Consider
the formula (8):

élQmmex.(AG (Exzclusion A éiQa.C'ritSeca A éin.C’ritSecbﬂQmutem) (8)

whereEzclusion = —(CritSec, A CritSecy), CritSec, = (AF CritSec,|Q.).
Protocolmutex has a strategy to guarantee the safety prop&@y( Exclusion),

on the one hand, and for eache {a, b}, to enable the recurrent liveness property
AG (3Q..(AF CritSec.|Q.), on the other hand. PropertAF CritSec. |Q.)
means that provided processoadopts policyQ ,.¢e., Which consists e.g. in re-
quiring the access to the critical resource and in maintgithis request, it will
eventually access to critical section. Ttmmmitmenbdf mutex to the single strat-
egyQmuter €Ntails fairness with respect to both processors, althaogbxplicitly
specified. Nevertheless, as explained in Section 7, solitidthout commitment
can also be specified.

Many other examples of concepts in honzero-sum games caxpbessed in our
setting, among which are all the proposals in [CHPO7].
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6 Automata constructions

We assume that the reader is familiar with alternating parge automata (simply
called automatawhen it is clear from the context), and with their relatiocipstvith
the mu-calculus and parity games (we refer to [ANO1], [KVVJGOhd [Wil01]).

Each formula of our calculus can be represented by alteiptirity tree automata,
thanks to a powerful construction which generalizes [RPR8nark that fix-points and
quantifiers do not commute in general: consider the formulas= 3Q.vZ.(AX Z A
QANEX Q) andat = vZ.(AX ZA3Q.Q NEX —Q), interpreted on a single infinite
path. Whereas the interpretation®f is the empty set, the one af; is the entire set
of states.

We start with an informal presentation of the construcsgrinciples: Existential
quantification corresponds to the projection, hence thd teekandle non-deterministic
automata [Rab69]; by th8imulation TheorerfMS95], every alternating automaton is
equivalent to a non-deterministic automaton, and the phaeeis effective with one
exponential blow-up in the size of the automaton. Fix-poipérators also have their
counterpart on automata: by [ANO1, Chapter 7, 7.2], autarsah contain variables,
we call themextended automataheir inputs are likg((S, s), val), where(S, s) is as
usual a model, andal : Var — 2° is a valuation to interpret the variables, in the same
line we interpret non-closed formulas. Extended automate ttheir own mu-calculus,
and fix-point apply on them. Given an extented automatothe extended automaton
1Z.A can be defined in such a way that e.g. for an automdtofia non-closed formula
39.a(Z), whereZ € Var is free ina(Z), the automatopZ..4 accepts the models of
uZ.(39.a(72)). Basically, the construction of Theorem 2 relies on threpst(1) we
build the automaton for(7); (2) by using the projection operation, we compute the
automaton foBQ.«(Z); (3) we build the automaton ferZ.(39.a(7)). Notice that the
automaton obtained fax(Z) may not be non-deterministic in general, either because
e.g.a(Z) is of the form—a/(Z), or of the forma;(Z) A az(Z). Preliminary to Step
(2) we may therefore apply the Simulation Theorem (whichAM(1, Chapter 9] still
applies to extended automata)entailing one exponenteal-bip .

Theorem 2. Letm,n > 1. Foranya € QD,,, write € N for the maximal number of
nested quantifiers in. Then, there exists an alternating parity tree automatdinwith
max(x, 0)-EXPTIME(|a|) states andnax(x — 1,0)-EXPTIME(|«|) priorities, which
accepts exactly the models@bf branching degre&, wherek = m™, m is the number
of moves for each player, andis the number of players.

Automata constructions established in Theorem 2 has maesesting corollaries:
If we fix the maximal number: of 3 or ¥ symbols in the formulas, the model-checking
problem forQD,, is k-EXPTIME-complete (for a fixed branching degree of the struc-
tures); more precisely, it is-EXPTIME in the size of the formula, but polynomial in
the size of the game structufe Indeed, for the upper bound, the proposed procedure
amounts to solving8 € L(.A%)?”, which in the light of [Jur98] for solving two-player
parity games can be done with the announced complexityhedotver bound, simply
observe thaD,, subsumes the proposal in [RP03]. As a consequence, the model
checking problem foRD,, is non-elementary.
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More interestingly, if coalition strategies solutionssbfor a given existentiap D,
statements and some game structure, there always exisiareges, that is describ-
able by finite state machines. Indeed, while model-checkify formulas (using a
classic parity game [Jur98]), any winning strategy for Blayin the parity game deliv-
ers adequate valuations of the quantified propositionsggarity games always have
memoryless solutions, there always exist regular valonatid the propositions, yielding
bounded memory solutions for coalition strategies.

7 Alternating Time Logics

We show that the alternating mu-calculasic and the “game logic” from [AHKO02]
GL are natural fragments @fD,,, as stated by Theorems 3 and 4 — we refer to [Pin07]
for details; results for weaker logics suchsag., Fair ATL, andATL* follow from their
natural embedding either intaviC or GL. As a corollary, automata constructions for al-
ternating time logics can be derived from the proceduregmtes! in Section 6; however,
we briefly explain why these automata constructions candréfiantly optimized.

For Q C Prop, theboundedQ-relativization( - | Q) is like the relativization (Defi-
nition 3), except that the downward propagation of propmss in the formulas termi-
nates when a quantified sub-formula is encountered:

(3Q'.0/|Q) =39 .o/ 9

Relying on the bounded relativization, we define the mogali®«( -| Q) which
has the following semantic§Qc(a]Qc) states the existence@outcome wherer
holds, but where any further statemér@c..o’ is interpreted in the complete game
structure, likewise the modalities of alternating timeitsg

7.1 The Alternating-time p-calculus

The syntax ofamc formulas isQ | T |~ | w1 V o2 | Z| uZ.0o(Z) | (C) O ¢ with
Q € Prop, C C P, and where eaclf € Var occurs under an even number of negation
symbols— in ¢(Z). These formulas are interpreted over CGS'’s supplied witalaar
tion val : Var — 25. Givenyp € AMC, its interpretationy®(val) C S is inductively

defined by:
QS (val) = A(Q) (~)° (val) = 5 \ ¢ (val)
TS (val) =S 75 (val) =val(Z)
(101 V 2)3 (val) = ¢ (val) U o3 (val)
(1Z.0(2))* (val) ={S" € S| 9(Z)° (val[S"/Z]) C S}

((C) O ¢)S (val) is the set of states € S such that there exists @move froms
contained inp® (val).

We define the mapping: AMC — QD,, inductively by: formulas likeQ), T andZ
are left unchanged, formulas likep, v1 V 2, anduZ.¢(Z) are dealt inductively, and
we set - R
((CHOwp) =3Qc.(AX 5] Qc)
whereQc = {Q, | p € C} is a set of fresh atomic propositions. Notice that the size of
@ is linear in the size op.
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Theorem 3. Given a CGSS, ¢ € AMC, and a valuatiorval : Var — 2, we have
> (val) = [ 218",

7.2 ThelogicGL

Formulas ofG L are of three types (the two last types are inherited fcam*):

State formulasre of the formQ, T, -, or ¢1 V w2 —Whereyp, ¢1, andyp, are state
formulas —, andiC.0 — whered is a tree formula —.

Tree formulasare of the formp — wherey is a state formula -6, or 67 v 05 — where
0, 81, andd, are path formulas —, arld ) — wherey is a path formula —.

Path Formulasare of the formy — wheref is a tree formula —), 11 V 1, O, Or

11 U s —wherey, 11, andyy are path formulas —.

We simply sketch the semantics of,, and we assume that the reader is familiar
with cTL* (see [AHKOZ2] for details). Lep be a state formula, and 1%, s) be a rooted
CGS.S, s | ¢, indicating thats satisfiesp in S, is defined by induction ovep. We
focus on formulas likefiC.0 (the others are dealt inductively or follow the semantics
of cTL*): S,s = FC.0 whenever there exists @-outcomeouT(Q¢, S, s) which
satisfiesd. Now, 6 is a tree formula which ircTL*, up to (non propositional) state
sub-formulasiC’.¢" which must be interpreted back inside Let »° denote the set
{s€S|S, s ¢}

To lighten the translation ofL into QD,,, we first establish a translation of.
into a second order extension of'.* (with decision modalities), writte@DCTL*; it
generalizes the proposal of [ES84] since quantificationg eeaur in sub-formulas. In
QDCTL*, we denote a tree formula k¥ (it may contain quantifications) and a path
formula byr, and we writeA 7 for —=E -, andG# for =(T U —0).

We adapt the definition of the bounded relativization (Seci) to the syntax of
QDCTL*. The relativization of a path formula is conditioned by thethp quantifier
which binds the formula, as exemplified by the two expression

(EX - Q) = EX[QA(-]Q)] (AX - Q) = EX[Q= (-Q)]

In order to distinguish the two cases, we define two relaiwins of path formulas
(-]JvQ) and( -]39), and set(#| Q) = (0]vQ) for all tree formulad. Let A € {3,V},
andd, 0,1, andf, be tree formulas:

- (QJaQ)=Q,(T]aQ)=T,and(3Q".0|AQ) = 3Q".0.

= (m0]aQ) =~(0]2Q) and(01 VO0:]AQ) = (1]1aQ) V (02]49).

- (En]vQ) = (E7]3Q) =E(r]|3Q),and(A7|vQ) = (A7|3Q) = A (7|vQ).
— (m Um)yQ) = [Q=(m1]vQ)] U [Q=(m2]vQ)].

= (mUm]3Q) =[QA (m1]3Q)] U[QA (m2]3Q)].

(we set similar definitions for path formulas). It can be shawat this definition is
consistent with the definition of Section 7. For example,sider thecTL* formula
EF @, N EF @, which is equivalent to mu-calculus formu@Z.EX Z Vv Q1) A
(uZ EX Z V Q2). Their respective boundeg-relativizationEF (Q A Q1) AEF (Q A
@Q2) (computed according to above) andZ. EX (QAZ)VQ1 )N\ (nZ.EX (QAZ)VQ2)
(computed according to Section 7) remain equivalent.
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We define” : GL — QDCTL* by induction: atomic propositions and are left
unchanged; formulas likep, 1 V 2 are dealt inductively, and we define

3C.H =39¢.(0]Qc)

Clearly, the size of5 is linear in the size of, for anyy € GL. Also, since3Qc.a €
QD,, is definable iQDCTL* providedu is, the co-domain of is indeedQDCTL*.

Theorem 4. For any state formulg € GL, ¢° = [ 7 ]s.

By an easy adaptation of e.g. the procedure of [Dam94],retatés inQDCTL* can
be effectively expressed mD,,.

7.3 A note on automata constructions for alternating time Igics

Although our translation of AMC or GL into QD,, may generate an arbitrary large

number of nested symbofs the corresponding automata nevertheless remain small,
if their construction is carefully conducted; applying Dihem 2 is actually avoidable.
Because formula$ are obtained by bounded relativizationsydd,, formulas, a quanti-
fied proposition never occurs in strict quantified sub-folasuThis observation enables
us to construct automata in a top-down manner, as opposkd tmttom-up procedure

of Theorem 2; due to lack of space, we refer the reader to JRifud the proof details

of these constructions, which incidentally match the tigtiinds from [AHKO0Z2].
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