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Abstract. The emerging technology of interacting systems calls for new for-
malisms to ensure their reliability. Concurrent games are paradigmatic abstract
models for which several logics have been studied. However,the existing for-
malisms show certain limitations in face of the range of strategy properties re-
quired to address intuitive situations. We propose a generic solution to specify
expressive constraints on strategies in concurrent games.Our formalism natu-
rally extends alternating-time logics while being highly flexible to combine con-
straints. Our approach is constructive and can synthesize many types of complex
strategies, via automata-theoretic techniques.

1 Introduction

Computer-system design currently relies on complex assemblages ofinteracting com-
ponentswhich communicate and share resources in order to achieve services. The com-
binatorics of such systems is so enormous that the development of adequate formal
methods to ensure their reliability has become a major challenge. In this context, games
are paradigmatic for providing expressive mathematical models of interactive systems,
reflecting their operational semantics and offering adequate reasoning tools. In order
to reason formally about interactive models, it is necessary to devise appropriate spec-
ification languages in which the desirable behaviors of the system can be stated; once
the properties are formulated, methods for automated verification and synthesis can be
employed to support the design process.

In the past decade, extensions of state-transition based models, such asConcur-
rent Game Structures[AHK02] which extend Kripke structures, have raised consid-
erable interest in virtue of offering mathematical settings to address formal analysis
of complex systems. At the same time, alternating-time logics such asATL, ATL

∗,
AMC and GL [AHK02] have been proposed as a natural extension of standard tem-
poral logics to the multiplayer setting. Noticeable theoretical and practical results ex-
ist for these logics, such as effective decision procedureswith reasonable cost for
ATL [vD03,KP04,GvD06,SF06,LMO07], and implementations [HKQ98,AdAdS+06].
However, it should be made clear that alternating time logics show certain limitations in
face of the range of strategy properties required to addressintuitive situations. For ex-
ample, communication protocols often require to consider fairness assumptions, which
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enable to exclude some undesirable computations of the system. When such assump-
tions are not expressible in the logic, non trivial efforts are needed to impose the con-
straints directly in the models [AHK02]. By this type of approach, only very dedicated
kind of analysis can be performed, and often, a minor addition of new constraints com-
pels the user to re-design its problem from scratch. Hence, there is a need for a for-
malism where constraints on strategies can be combined. Other examples of limitations
can be borrowed in solution concepts for non-zero sum games.As far as we are con-
cerned, uniqueness of a Nash equilibrium [Cha05], or dominance of strategies [Ber07]
cannot be expressed in any respect, because the formalisms do not have strategies as
main objects.

In this paper, we propose a generic constructive solution toanalyze the strategies of
concurrent games. Our formalism is tuned to specify at the same time the strategies,
their properties (e.g. fairness), and their objectives in aunified framework. Expres-
sive constraints can henceforth be formulated; for exampleall the limitations discussed
above are overcome. Moreover, all the concepts for nonzero sum games considered by
[CHP07] can be captured, since we can express Strategy Logic(SL) in our formalism;
notice that SL is limited to turned-based arenas, whereas wealso consider general con-
current game structures, and SL is not powerful enough to express, e.g. it cannot express
the Alternating Mu-Calulus [AHK02]. We start from the logicDµ, a traditional propo-
sitional mu-calculus [Koz83], augmented withdecision modalities. By the semantics of
the logic, the game is unfold into an infinite tree. The purpose of decision modalities is
to specify particular monadic predicates over the nodes of the computation tree of the
game, to establish a one-to-one correspondence between these particular predicates and
the strategies of sets of players; the outcome of a strategy is the sub-tree whose nodes
form the predicate, and still is a concurrent game, but with less players.

Objectives of strategies can be anyω-regular property. In essence, strategies to-
gether with their objectives have anassume-guaranteeflavor: by assuming that a cer-
tain strategy is adopted, we guarantee some temporal property of its outcome. From this
point of view, we operate on the model (by applying the strategy) and leave the prop-
erty intact, as done in [CHP07]. In order to decrease the intricacy of the problem, we
propose a powerful although simple mechanism to operate on the logic side while leav-
ing the models intact; it is calledrelativization. The benefit is to transform the complex
assume-guarantee statement into a mere temporal statementabout the model.

Following the original idea of [RP03] for controller synthesis problems, we define
the logicQDµ a monadic second order extension ofDµ, but where fix-points and quan-
tifiers can arbitrarily interleave. Our calculus is then equipped to quantify over strate-
gies, as we show, in a highly expressive manner. In particular, it subsumes alternating
time logics, while being amenable to automata constructions, hence to an effective pro-
cedure to synthesize the strategies.

The paper is organized as follows: we present the models in Section 2, and the
logic in Section 3.Strategiesandoutcomesare defined in Section 4, followed by the
relativizationprinciple. Section 5 is dedicated to significant examples oflogical speci-
fications. Section 6 describes automata constructions forQDµ. We complete the work
by the embedding of alternating-time logics into our system(Section 7), and a note on
a customized automata construction for these logics.
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2 The models

In the following, we assume an infinite countable ordered setIP = {p, p′, . . .} of players,
and an infinite set ofatomic propositionsProp = {Q,Q1, Q2, . . .}. Finite setsC of
players arecoalitions. For any integeri ≥ 1, let [i] denote the set{1, . . . , i}.

A Concurrent Game Structure(CGS) overΛ andM is a tupleS = 〈Π,S,Λ, λ,M, δ〉,
where:

– Π ⊆ IP is a non-empty finite set ofplayers, whose cardinal is denoted byn; we
may represent the ordered setΠ by the natural numbers1, . . . , n.

– S is a set ofstates, with typical elements ofS writtens, s′, . . ..
– M is a set ofmoves. Eachj ∈M is a possiblemoveavailable in each state to each

playerp ∈ Π . A decision vectoris a tuplex = 〈j1, . . . , jn〉 ∈ Mn, wherejp is a
move ofp ∈ Π . The valueCard(M)n is thebranching degreeof S.

– δ : S ×Mn → S is thetransition function: given a states ∈ S and decision vector
〈j1, . . . , jn〉, the game moves to the stateδ(s, x). Eachδ(s, x) wherex ∈ Mn is a
successorof s, and successors ofs form the setSucc(s).

– Λ ⊆ Prop, andλ : Λ → 2S labels states by propositions. A states is labelled
by Q ∈ Λ whenevers ∈ λ(Q). We let λ(Q) :=

⋂
Q∈Q λ(Q), for any set of

propositionsQ ⊆ Λ.

Comparing this with the original definition of [AHK02], we may notice the following:

1. We use the same set of moves for all players, independentlyof the current state.
2. Each player moves independently of the others.
3. Players make concurrent choices in each state.

However, the proposed models are expressive enough to capture the essential features
of concurrent games, as we can actually simulate any concurrent game: In general, each
player in a current states has a setMp

s of moves. We can simulate this situation with
a unique set of movesM by renaming the moves inMp

s and by qualifying some states
dummy; the logical statements need being interpreted on the relevant part of the models,
namely on computations which do not encounter dummy states.Hence Points 1 and 2
are not restrictive. Since we can restrict players’ set of moves from a given state, enforc-
ing all but one player to have a single choice simulates turned-based games; this sorts
out Point 3. Notice that asynchronous games are also captured: following [AHK02], we
designate a particular playerschedulerwhich in every state selects one of the players;
the latter then determines the next state. Now, the crucial assumption that the scheduler
fairly selects the players can be expressed in the logic, as opposed to [AHK02] where
fairness is defined in the models.

Given s ∈ S, p ∈ Π , andj ∈ M , we letSuccj(s, p) ⊆ Succ(s) be the set of
successors ofs which can be enforced by the movej of playerp; formally, it is the
set of states of the formδ(s, 〈j1, . . . , jn〉) with jp = j. Consider the classic two-player
gamePaper, Rock, and Scissors (PRS)as depicted in Figure 1: the possible moves of
each player range overM = {P,R, S} for “paper”, “rock” and “scissors” respectively.
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Fig. 1. The Paper, Rock, and Scissors game

The propositions 1-Win and 2-Win indicate who is the winner in the current config-
uration; let us ignore propositionQ for the moment. In this game,SuccS(s0, 2) =
{s3, s6, s9} is the set of successors ofs0 player2 can enforce by playing “S”. We let
SuccSets(s, p) ⊆ 2Succ(s) be the set of allSuccj(s, p) wherej ∈ M , composed of
sets of successors ofs which can be enforced by some move of playerp. In PRS,
SuccSets(s0, 2) = {{s1, s4, s7}, {s2, s5, s8}, {s3, s6, s9}}. Since a playerp 6∈ Π
cannot influence the game, we take the convention thatSuccSets(s, p) = {Succ(s)}.
Given a coalitionC ands ∈ S, aC-move froms is an element of∩p∈CSuccSets(s, p);
it is a subset ofSucc(s) which elements result from fixing a particular move for each
player inC. In PRS, a{1, 2}-move froms0 is {si}, for some1 ≤ i ≤ 9.

3 The logical framework

We propose a generalization of [RP03] which is twofold: we enrich the propositional
mu-calculus [Koz83] by allowingdecision modalities, and we consider its monadic sec-
ond order extension by allowing quantifications over atomicpropositions, even under
the scope of fix-points operators. We first present the propositional mu-calculus with
decision modalities; the second order extension follows inthis section.

The logicDµ is the mu-calculus withdecision modalities(formulas⋄pQ). Given
a setProp of atomic propositions, an infinite setIP, and a set of variablesVar =
{Z, Y, . . .}, the syntax ofDµ is:

Q | ⋄p Q |⊤ |¬β |β1 ∨ β2 |EXβ |Z |µZ.β(Z)

whereQ ∈ Prop, p ∈ IP, Q ⊆ Prop, andβ, β1, β2 areDµ formulas. Fix-point for-
mulas (µZ.β(Z)) are such that any occurrence ofZ ∈ Var in β(Z) occurs under an
even number of negation symbols¬. A sentenceis a formula where any occurrence of
a variableZ occurs under the scope of aµZ operator. The set of formulas which do not
contain any decision modality correspond to the traditional propositional mu-calculus,
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whence the standard notations⊥, AXβ, β1 ∧ β2, β1⇒β2, andνZ.β(Z) for respectively
¬⊤, ¬EX¬α, ¬(¬β1 ∨¬β2), ¬β1 ∨β2, and¬µZ.¬β(¬Z). Moreover, givenβ ∈ Dµ,
we freely use the conciseCTL-like notationAG (β) for νZ.(β ∧ AXZ), which ex-
presses thatβ is globally true in the future, andEF (β) for ¬AG (¬β).

As for the traditional mu-calculus, a formulaβ ∈ Dµ is interpreted in a CGSS =
〈Π,S,Λ, λ,M, δ〉 supplied with a valuationval : Var → 2S . Its semantics[[ β ]]valS is a
subset ofS, defined by induction over the structure ofβ. The following is very standard
as the mu-calculus operators semantics:

[[Q ]]valS = {s ∈ S | s ∈ λ(Q)}
[[ ⊤ ]]valS =S

[[ ¬β ]]valS =S \ [[ β ]]valS

[[ β1 ∨ β2 ]]valS = [[ β1 ]]valS ∪ [[ β2 ]]valS

[[ Z ]]valS =val(Z)
[[ EXβ ]]valS = {s ∈ S | ∃s′ ∈ Succ(s) ∧ s′ ∈ [[ β ]]valS }

[[ µZ.β(Z) ]]valS =∩{S′ ⊆ S |[[ β(Z) ]]
val(S′/Z)
S ⊆ S′}

Classically, as a valuationval does not influence the semantics of a sentenceβ ∈ Dµ,
we then simply write[[ β ]]S .

We now focus on decision modalities which are essential to our logic:

[[ ⋄pQ ]]valS = {s ∈ S |Succ(s) ∩ λ(Q) ∈ SuccSets(s, p)}

By definition,s ∈ [[ ⋄pQ ]]S whenever the setSucc(s) ∩ {λ(Q) |Q ∈ Q} can alter-
natively be characterized as a move of playerp, namely asSuccj(s, p) for some move
j ∈ M . Notice that the semantics of⋄pQ is well defined even ifp 6∈ Π , since in this
caseSuccSets(s, p) equals{Succ(s)} by convention. In most of our examples, the set
Q has a single elementQ, so we simply write⋄pQ for ⋄p{Q}.

In the example of the PRS game, Figure 1,s0 6∈ [[ ⋄1(1-Win) ]]S because the pred-
icate 1-Win does not match a set of successors enforced by a move of player1; as a
matter of fact, player1 does not have a winning strategy, neither does player2 for sym-
metrical reasons. On the contrarys0 ∈ [[ ⋄1Q ]]S , sinceQ matchesSuccS(s0, 2). When
the game is infinite, eg by repeating the game PRS, it can be unfolded as an infinite
tree, the nodes of which are histories of an ongoing play. Assume given a predicateQ
on the tree nodes such that⋄pQ is invariant in the computation tree, that is such that
AG (⋄pQ) holds in the root. Then any computation insideQ corresponds to a play for
a fixed strategy of playerp, namely the one designated byQ, and the sub-tree formed
by these computations is the outcome of this very strategy. Combining decision modal-
ities for several players characterizes coalition moves: for instance, when a formula like
⋄p1

Q1∧⋄p2
Q2∧⋄p3

Q3 holds, then the set of successors which satisfyQ1∧Q2∧Q3 cor-
responds to some move of the coalition{p1, p2, p3}. By extension, if each predicateQi

designates a strategy ofpi, the sub-tree whose computations remain insideQ1∧Q2∧Q3

is the outcome of the coalition strategy.

The logic is extended to the monadic second order to capture strategies as main ob-
jects of the logic: stating that there exists a predicateQ suchAG (⋄pQ) holds expresses
the existence of a strategy. This extension of the logic is written QDµ, for “quantified
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Dµ”; its syntax is as forDµ but with quantifications over sets of atomic propositions.
The syntax ofQDµ is:

Q | ⋄p Q |⊤ |¬α |α1 ∨ α2 |EXα |Z |µZ.α(Z) | ∃Q.α

We write∀Q.α for ¬∃Q.¬α.

The semantics ofQDµ generalizes the one ofDµ: the cases ofQ, ⋄pQ, ⊤, ¬α,
α1 ∨ α2, EXα, Z, andµZ.α(Z) are dealt inductively. The semantics of quantification
follows the proposal of [RP03]: the mechanism to define new predicatesQ ∈ Q on a
game structure relies on a composition of the structure witha Kripke structure overQ,
called alabeling.

r Q

Q

1, 2, 4, 5, 7, 8
3, 6, 9

1, . . . , 91, . . . , 9

Fig. 2.A Q-labeling(E , r) of degree9

Definition 1. (Q-labelings)GivenQ ⊆ Prop andm ≥ 1, aQ-labeling(or a labeling
overQ) is a pair (E , r) whereE = 〈E,Q, γ, [m], δ′〉 is a (one player) CGS structure
overQ and[m], andr ∈ E is its root. It is a Krikpe structure.

We compose labelings and CGS’s with the same branching degree. We suppose fixed
once for all a principle to bijectively relate any set of the formMn to the set[Card(M)n]
(recall it is {1, . . . , Card(M)n}); for example one can use the coding proposed by
[GvD06]. In the following, let us qualifycanonicala bijection fromMn to [Card(M)n]
whenever it is based on this principle.

Now assume given a rooted CGS(S, s) with n players overΛ andM , and a labeling
(E , r) overQ and [Card(M)n], whereE = 〈E,Q, γ, [Card(M)n], δ′〉; denote byτ
the canonical bijection fromMn to [Card(M)n]. Thelabeling of(S, s) by(E , r) is the
synchronous product of the two structures, wherex-transitions inS are synchronized
with theτ(x)-transitions inE . Formally,

(S, s) × (E , r) = 〈Π,S × E,Λ ∪ Q, (λ× γ), δ”〉

is the CGS overΛ ∪Q andM rooted at(s, r), where:

– (λ×γ)(Q) = λ(Q)∪γ(Q), for eachQ ∈ Λ∪Q with the convention that ifQ 6∈ Λ
(or 6∈ Q) thenλ(Q) (respectivelyγ(Q)) is the empty set, and

– δ”((s1, e1), x) = (s2, e2) wheneverδ(s1, x) = s2 andδ′(e1, τ(x)) = e2.
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In the following, composition of a structure with a labelingimplicitly assumes that
their branching degrees match. Figure 1 shows a (regular) labeling (E , r) overQ and
[32], and the labeling of the game structure PRS by(E , r), with the convention that
τ(〈P, P 〉) = 1, τ(〈P,R〉) = 2, ..., τ(〈S,R〉) = 8, andτ(〈S, S〉) = 9. The result is
depicted in Figure 1.

Notice that since propositions of compound states accumulate, and becauseE andS
have the same branching degree,(S, s)× (E , r) is bisimilar to(S, s) in the usual sense,
if we restrict to propositions that are not inQ. In particular ifQ is empty,(S, s)×(E , r)
is bisimilar to(S, s). The composition ofS and labelings is tedious but it only aims at
formalizing the means to decoration nodes of the computation tree by propositions; in
particular, whenE is a finite stateQ-labeling, the predicatesQ are regularly placed on
the computation tree of the game structure.

We have now the material to define the meaning of quantifiers:s ∈ [[ ∃Q.α ]]valS if
and only if there exists aQ-labeling(E , r) such that(s, r) ∈ [[ α ]]val

′

(S,s)×(E,r), where

val′(Z) = val(Z) × E.

Remark that formulas ofQDµ have the same truth value if we unravel the structure
S. Besides, the semantics of quantified formulas is a lot more intuitive on the compu-
tation tree:∃Q.α holds if there is a way to assign the propositions ofQ to the nodes of
the computation tree so thatα holds.

4 Strategies and Outcomes

In this section, we assume a fixed CGSS = 〈Π,S,Λ, λ,M, δ〉.
We revisit the central concepts ofstrategiesandoutcomeswhich underlies the se-

mantics of all logics for CGS’s: as already explained in Section 3, giving a strategy of
playerp is equivalent to labeling the structure by some propositionQ where the prop-
erty⋄pQ is invariant. Since invariance is definable in the logic, we obtain the following
definition for strategies:

Definition 2. (Strategies)Given a coalitionC ⊆ Π , and a set{Qp | p ∈ C} ⊆ Prop,
a C-strategy froms designated by{Qp | p ∈ C} is a labeling(E , r) of (S, s) over
{Qp | p ∈ C}, such that

(s, r) ∈ [[ AG (
∧

p∈C

⋄pQp) ]](S,s)×(E,r) (1)

For eachC-strategy(E , r) from s designated by a setQC = {Qp | p ∈ C}, where
E = 〈E,Q, γ, [m], δ′〉, we define itsoutcomeas the structure obtained by forgetting
all states(s′, e) which are not chosen by the coalitionC, hence not in the predicate∧

p∈C Qp, and by forgetting the players ofC as their moves are fixed by the strategy.
Formally, assumingC 6= ∅, we defineOUT(QC ,S, s) = 〈Π \ C, (S × E) ∩ (λ ×
γ)(Q), Λ ∪ Q,M, δ”〉, with δ”((s1, e1), y) = δ((s1, e1), y

′) wherey′ is the decision
vector of players inΠ obtained by completing the decision vectory of players inΠ \C
by the moves of the players inC recommended by theC-strategy. IfC = ∅ then as
expectedOUT(Q∅,S, s) = (S, s).
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Lemma 1. OUT(QC ,S, s) is a CGS (rooted ats) over the set of playersΠ \ C.

Our definition of outcome is sensible as the set of maximal paths inOUT(QC ,S, s)
coincides with the original definition of ’outcome’ in the sense of [AHK02]. However,
because our notion retains the structure of a game, contraryto the original definition,
we can state any logical statements anew.

In the following, and when it is clear from the context, we simply say “QC -strategy”
for “C-strategy designated byQC”, and we writeQp for Q{p}. Also, we concisely write
Q for

∧
Q∈QQ and define

∧
Q∈∅Q as⊤.

We present now a simple mechanism called therelativizationwhich transforms a
formula by propagating downward in the formula a set of atomic propositions.

Definition 3. (Q-Relativization of a formula) For Q ⊆ Prop, theQ-relativizationis
a mapping(·|Q) : QDµ → QDµ defined by induction:

(Q|Q)=Q (⊤|Q) =⊤ (Z|Q)=Z
(¬α|Q) =¬(α|Q) (α1 ∨ α2|Q) = (α1|Q) ∨ (α2|Q)

(µZ.α(Z)|Q) =µZ.(α(Z)|Q) (∃Q′.α|Q)=∃Q′.(α|Q)
(⋄pQ|Q)= ⋄p(Q∧Q) (EXα|Q)=EX [

∧
Q∈QQ ∧ (α|Q)]

From the above definition, we immediately obtain the equivalences:

(α|∅) ≡ α and (α|Q ∪ {Q}) ≡ ((α|Q)|Q). (2)

Regarding properties brought about by strategies, Theorem1 below shows that we
can either operate on the model, by considering the outcome and examine its property,
or else operate on the formula, by considering the relativization and interpret it on the
structure:

Theorem 1. Given a rooted CGS(S, s), a coalitionC, and aQC-strategy(E , r) from
s, we have: for anyα ∈ QDµ, and any valuationval : Var → 2S :

[[ (α|QC) ]]val
′

(S,s)×(E,r) =[[ α ]]val
′

OUT(QC ,S,s)

whereval′(Z) = val(Z) × E.

Proof. The proof of Theorem 1 is conducted by a double induction on the setC and on
the structure ofα. The caseC = ∅ is trivial and independent ofα, since(α|QC) isα by
(2), on the one hand, and(S, s) × (E , r) andOUT(QC ,S, s) are isomorphic to(S, s),
on the other hand. Assume nowC = C′∪{p}, with c 6∈ C. TheQC-strategy(E , r) can
be decomposed into(E ′, r′) × (Ep, rp), where(E ′, r′) is aQC′-strategy and(Ep, rp) is
aQp-strategy; let us write(S′, r′) for (S, s) × (E ′, r′). By (2):

[[ (α|QC) ]]val
′

(S,s)×(E,r) = [[ ((α|QC′)|Qp) ]]val
′

(S′,s′)×(Ep,rp) (3)

Lemma 2. For any rooted CGS(S′, s′), any{p}-strategy(E , r) designated byQ, any
α ∈ QDµ, and any valuationval : Var → 2S , [[ (α|Q) ]]val

′

(S′,s′)×(E,r) = [[ α ]]val
′

OUT(Q,S,s)

whereval′(Z) = val(Z) × E.
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The proof of this lemma is based on a simple induction over theformulas, in the spirit
of [RP03]. Informally, remark first that the relativizationis inductively defined for all
formulas but those of the formEXα. The inductive cases of the lemma follow this line.
Regarding statements likeEXα, the lemma simply expresses that a successor exists
in the prune structureOUT(Q,S, s) if and only if it already existed in the complete
structure and it was labeled byQ.

By Lemma 2, the right hand side of (3) is equal to[[ (α | QC′) ]]val
′

OUT(Q,S′,s′). Since
OUT(Q,S′, s′) andOUT(Q,S, s) × (E ′, r′) are isomorphic, it is also equal to
[[ (α|QC′) ]]val

′

OUT(Q,S,s)×(E′,r′) which by induction hypothesis coincides with

[[ α ]]val
′

OUT(QC′ ,OUT(Q,S,s),(s,rp)). By definition of the outcomes, we have:

Lemma 3. Given two distinct coalitionsC1, C2, and any twoQCi
-strategies(Ei, ri)

(i ∈ {1, 2}), OUT(QC1∪C2
,S, s) andOUT(QC1

,OUT(QC2
,S, s), (s, r2)) are isomor-

phic.

Applying Lemma 3 to the term[[α ]]val
′

OUT(QC′ ,OUT(Q,S,s),(s,rp)) yields[[α ]]val
′

OUT(QC ,S,s),
which concludes the proof of Theorem 1.

Corollary 1. Given a CGSS, a coalitionC, and a sentenceα ∈ QDµ. Consider a set
of fresh atomic propositionsQC = {Qp | p ∈ C} indexed overC. The formula

∃QC .[AG (
∧

p∈C

⋄pQp) ∧ (α|QC)]

characterizes the states from which there exists aC-outcome of(S, s) satisfyingα.

Proof. By definition, there exists aQC -labeling froms, (E , r) such that(s, r) is a
model of[AG (

∧
p∈C ⋄pQp) ∧ (α|QC)]. Therefore,

(s, r) ∈ [[ AG (
∧

p∈C

⋄pQp) ]](S,s)×(E,r), and (4)

(s, r) ∈ [[ (α|QC) ]](S,s)×(E,r). (5)

By (4), (E , r) is aQC-strategy. By Theorem 1, (5) is equivalent tos ∈ [[α ]]OUT(QC ,S,s),
which concludes. For the reciprocal, simply unroll the reasoning backward.

We make strategies become the main objects of our logic: given a coalitionC, and
a setQC = {Qp | p ∈ C} of propositions, we define the following dual expressions:

∃̂QC .α
def
= ∃QC .[AG (

∧

p∈C

⋄pQp) ∧ α] ∀̂QC .α
def
= ∀QC .[AG (

∧

p∈C

⋄pQp) ⇒ α]

By Corollary 1,∃̂QC .(α|QC) expresses the existence of aC-strategy which enforces
α. As widely demonstrated in the next section, statements of the form(α|QC) can be
combined, and associated with other types of statements (see (6) and (7)). Moreover the
propertyα itself can incorporate specifications about other strategies, hence expressing
commitment (see (8)).
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5 Expressiveness issues

This section reveals the high expressiveness of the formalism. We present three signif-
icant properties we can express in our formalism, but, we believe, in none of the other
logics developed for concurrent games so far. Let us simply write (α |Q1 ∧ Q2) for
(α | {Q1, Q2}), (Q = Q′) for AG (Q ⇔ Q′) to denote equality of predicates, and
(Q 6= Q′) for ¬(Q = Q′).

1. Unique Nash equilibrium inω-regular games.Given a two-player game, and an
ω-regular objectiveβ [Cha05], the existence of a Nash equilibrium can be stated
by ∃̂Q1.∃̂Q2.Equil(β,Q1, Q2), where

Equil(β,Q1, Q2)
def
=





(β|Q1 ∧Q2)

∧∀̂Q′
2.(Q2 6= Q′

2)⇒(¬β|Q1 ∧Q′
2)

∧∀̂Q′
1.(Q1 6= Q′

1)⇒(¬β|Q′
1 ∧Q2)

Uniqueness of the Nash equilibrium is specified by:

∃̂Q1.∃̂Q2.Equil(β,Q1, Q2) ∧ Unique(Equil(β,Q1, Q2), Q1, Q2) (6)

whereUnique(α,Q1, Q2) = ∀̂Q′
1.∀̂Q

′
2.[α⇒ (Q1 = Q′

1) ∧ (Q2 = Q′
2)].

2. Dominance of strategies.For instance, a strategyQweakly dominates another strat-
egyQ′ with respect to a goalβ [Ber07] whenever (7) holds.

∀̂R.[(β|Q′ ∧R)⇒(β|Q′ ∧R)] ∧ ∃̂R.[(β|Q ∧R) ∧ (¬β|Q′ ∧R)] (7)

3. Communication protocols. By another reading of Corollary 1, a formula∃̂QC .(α|
QC) states the existence of aC-outcome fixed once for all in whichα is interpreted.
If α contains a quantified sub-formula∆QC′ .(α′|QC′) (∆ ∈ {∃̂, ∀̂}), the statement
α′ is interpreted inC′-outcomes which lie “inside” the fixedC-outcome. Consider
a system with two processorsa andb which share a critical resource; we want to
specify a protocolmutex in charge of achieving the mutual exclusion. Consider
the formula (8):

∃̂Qmutex.(AG (Exclusion ∧ ∃̂Qa.CritSeca ∧ ∃̂Qb.CritSecb)|Qmutex) (8)

whereExclusion = ¬(CritSeca ∧CritSecb), CritSecz = (AFCritSecz|Qz).
Protocolmutex has a strategy to guarantee the safety propertyAG (Exclusion),
on the one hand, and for eachz ∈ {a, b}, to enable the recurrent liveness property
AG (∃̂Qz.(AFCritSecz |Qz), on the other hand. Property(AFCritSecz |Qz)
means that provided processorz adopts policyQmutex, which consists e.g. in re-
quiring the access to the critical resource and in maintaining this request, it will
eventually access to critical section. Thecommitmentof mutex to the single strat-
egyQmutex entails fairness with respect to both processors, althoughnot explicitly
specified. Nevertheless, as explained in Section 7, solutions without commitment
can also be specified.

Many other examples of concepts in nonzero-sum games can be expressed in our
setting, among which are all the proposals in [CHP07].
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6 Automata constructions

We assume that the reader is familiar with alternating parity tree automata (simply
called automatawhen it is clear from the context), and with their relationship with
the mu-calculus and parity games (we refer to [AN01], [KVW00], and [Wil01]).

Each formula of our calculus can be represented by alternating parity tree automata,
thanks to a powerful construction which generalizes [RP03]. Remark that fix-points and
quantifiers do not commute in general: consider the formulasα⊥ = ∃Q.νZ.(AXZ ∧
Q∧EX¬Q) andα⊤ = νZ.(AXZ∧∃Q.Q∧EX¬Q), interpreted on a single infinite
path. Whereas the interpretation ofα⊥ is the empty set, the one ofα⊤ is the entire set
of states.

We start with an informal presentation of the construction’s principles: Existential
quantification corresponds to the projection, hence the need to handle non-deterministic
automata [Rab69]; by theSimulation Theorem[MS95], every alternating automaton is
equivalent to a non-deterministic automaton, and the procedure is effective with one
exponential blow-up in the size of the automaton. Fix-pointoperators also have their
counterpart on automata: by [AN01, Chapter 7, 7.2], automata can contain variables,
we call themextended automata; their inputs are like((S, s), val), where(S, s) is as
usual a model, andval : Var → 2S is a valuation to interpret the variables, in the same
line we interpret non-closed formulas. Extended automata have their own mu-calculus,
and fix-point apply on them. Given an extented automatonA, the extended automaton
µZ.A can be defined in such a way that e.g. for an automatonA of a non-closed formula
∃Q.α(Z), whereZ ∈ Var is free inα(Z), the automatonµZ.A accepts the models of
µZ.(∃Q.α(Z)). Basically, the construction of Theorem 2 relies on three steps. (1) we
build the automaton forα(Z); (2) by using the projection operation, we compute the
automaton for∃Q.α(Z); (3) we build the automaton forµZ.(∃Q.α(Z)). Notice that the
automaton obtained forα(Z) may not be non-deterministic in general, either because
e.g.α(Z) is of the form¬α′(Z), or of the formα1(Z) ∧ α2(Z). Preliminary to Step
(2) we may therefore apply the Simulation Theorem (which by [AN01, Chapter 9] still
applies to extended automata)entailing one exponential blow-up .

Theorem 2. Letm,n ≥ 1. For anyα ∈ QDµ, write κ ∈ IN for the maximal number of
nested quantifiers inα. Then, there exists an alternating parity tree automatonAk

α with
max(κ, 0)-EXPTIME(|α|) states andmax(κ − 1, 0)-EXPTIME(|α|) priorities, which
accepts exactly the models ofα of branching degreek, wherek = mn,m is the number
of moves for each player, andn is the number of players.

Automata constructions established in Theorem 2 has many interesting corollaries:
If we fix the maximal numberκ of ∃̂ or ∀̂ symbols in the formulas, the model-checking
problem forQDµ is κ-EXPTIME-complete (for a fixed branching degree of the struc-
tures); more precisely, it isκ-EXPTIME in the size of the formula, but polynomial in
the size of the game structureS. Indeed, for the upper bound, the proposed procedure
amounts to solving “S ∈ L(Ak

α)?”, which in the light of [Jur98] for solving two-player
parity games can be done with the announced complexity. For the lower bound, simply
observe thatQDµ subsumes the proposal in [RP03]. As a consequence, the model-
checking problem forQDµ is non-elementary.
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More interestingly, if coalition strategies solutions exist for a given existentialQDµ

statements and some game structure, there always exists regular ones, that is describ-
able by finite state machines. Indeed, while model-checkingQDµ formulas (using a
classic parity game [Jur98]), any winning strategy for Player 0 in the parity game deliv-
ers adequate valuations of the quantified propositions; since parity games always have
memoryless solutions, there always exist regular valuations of the propositions, yielding
bounded memory solutions for coalition strategies.

7 Alternating Time Logics

We show that the alternating mu-calculusAMC and the “game logic” from [AHK02]
GL are natural fragments ofQDµ, as stated by Theorems 3 and 4 – we refer to [Pin07]
for details; results for weaker logics such asATL, FairATL, andATL

∗ follow from their
natural embedding either intoAMC or GL. As a corollary, automata constructions for al-
ternating time logics can be derived from the procedure presented in Section 6; however,
we briefly explain why these automata constructions can be significantly optimized.

ForQ ⊆ Prop, theboundedQ-relativization( ·⌋Q) is like the relativization (Defi-
nition 3), except that the downward propagation of propositions in the formulas termi-
nates when a quantified sub-formula is encountered:

(∃Q′.α′⌋Q) = ∃Q′.α′ (9)

Relying on the bounded relativization, we define the modality ∃̂QC( ·⌋QC) which
has the following semantics:̂∃QC(α⌋QC) states the existence aC-outcome whereα
holds, but where any further statement∃̂QC′ .α′ is interpreted in the complete game
structure, likewise the modalities of alternating time logics.

7.1 The Alternating-time µ-calculus

The syntax ofAMC formulas isQ | ⊤ | ¬ϕ |ϕ1 ∨ ϕ2 |Z |µZ.ϕ(Z) | 〈〈C〉〉 ©ϕ with
Q ∈ Prop, C ⊆ IP, and where eachZ ∈ Var occurs under an even number of negation
symbols¬ in ϕ(Z). These formulas are interpreted over CGS’s supplied with a valua-
tion val : Var → 2S . Givenϕ ∈ AMC, its interpretationϕS(val) ⊆ S is inductively
defined by:

QS(val)=λ(Q) (¬ϕ)S (val)=S \ ϕS(val)
⊤S(val)=S ZS(val)=val(Z)

(ϕ1 ∨ ϕ2)
S(val)=ϕS

1 (val) ∪ ϕS
2 (val)

(µZ.ϕ(Z))S(val)=
⋂
{S′ ⊆ S |ϕ(Z)S(val[S′/Z]) ⊆ S′}

(〈〈C〉〉©ϕ)S (val) is the set of statess ∈ S such that there exists aC-move froms
contained inϕS(val).

We define the mappinĝ· : AMC → QDµ inductively by: formulas likeQ, ⊤ andZ
are left unchanged, formulas like¬ϕ, ϕ1 ∨ ϕ2, andµZ.ϕ(Z) are dealt inductively, and
we set

̂(〈〈C〉〉©ϕ) = ∃̂QC .(AX ϕ̂⌋QC)

whereQC = {Qp | p ∈ C} is a set of fresh atomic propositions. Notice that the size of
ϕ̂ is linear in the size ofϕ.
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Theorem 3. Given a CGSS, ϕ ∈ AMC, and a valuationval : Var → 2S, we have
ϕS(val) = [[ ϕ̂ ]]valS .

7.2 The logicGL

Formulas ofGL are of three types (the two last types are inherited fromCTL
∗):

State formulasare of the formQ, ⊤, ¬ϕ, or ϕ1 ∨ ϕ2 – whereϕ, ϕ1, andϕ2 are state
formulas –, and∃∃C.θ – whereθ is a tree formula –.
Tree formulasare of the formϕ – whereϕ is a state formula –,¬θ, or θ1 ∨ θ2 – where
θ, θ1, andθ2 are path formulas –, andEψ – whereψ is a path formula –.
Path Formulasare of the formθ – whereθ is a tree formula –,¬ψ, ψ1 ∨ ψ2, ©ψ, or
ψ1 Uψ2 – whereψ, ψ1, andψ2 are path formulas –.

We simply sketch the semantics ofGL, and we assume that the reader is familiar
with CTL

∗ (see [AHK02] for details). Letϕ be a state formula, and let(S, s) be a rooted
CGS.S, s |= ϕ, indicating thats satisfiesϕ in S, is defined by induction overϕ. We
focus on formulas like∃∃C.θ (the others are dealt inductively or follow the semantics
of CTL

∗): S, s |= ∃∃C.θ whenever there exists aC-outcomeOUT(QC ,S, s) which
satisfiesθ. Now, θ is a tree formula which inCTL

∗, up to (non propositional) state
sub-formulas∃∃C′.ϕ′ which must be interpreted back insideS. Let ϕS denote the set
{s ∈ S | S, s |= ϕ}.

To lighten the translation ofGL into QDµ, we first establish a translation ofGL

into a second order extension ofCTL
∗ (with decision modalities), writtenQDCTL

∗; it
generalizes the proposal of [ES84] since quantifications may occur in sub-formulas. In
QDCTL

∗, we denote a tree formula byθ (it may contain quantifications) and a path
formula byπ, and we writeAπ for ¬E¬π, andGθ for ¬(⊤U¬θ).

We adapt the definition of the bounded relativization (Section 7) to the syntax of
QDCTL

∗. The relativization of a path formula is conditioned by the path quantifier
which binds the formula, as exemplified by the two expressions:

(EX · |Q) = EX [Q ∧ (· |Q)] (AX · |Q) = EX [Q⇒ (· |Q)]

In order to distinguish the two cases, we define two relativizations of path formulas
( ·⌋∀Q) and( ·⌋∃Q), and set(θ⌋Q) = (θ⌋∀Q) for all tree formulaθ. Let∆ ∈ {∃, ∀},
andθ, θ1, andθ2 be tree formulas:

– (Q⌋∆Q) = Q, (⊤⌋∆Q) = ⊤, and(∃Q′.θ⌋∆Q) = ∃Q′.θ.
– (¬θ⌋∆Q) = ¬(θ⌋∆Q) and(θ1 ∨ θ2⌋∆Q) = (θ1⌋∆Q) ∨ (θ2⌋∆Q).
– (E π⌋∀Q) = (E π⌋∃Q) = E (π⌋∃Q), and(Aπ⌋∀Q) = (Aπ⌋∃Q) = A (π⌋∀Q).
– (π1 Uπ2⌋∀Q) = [Q⇒(π1⌋∀Q)]U [Q⇒(π2⌋∀Q)].
– (π1 Uπ2⌋∃Q) = [Q∧ (π1⌋∃Q)]U [Q∧ (π2⌋∃Q)].

(we set similar definitions for path formulas). It can be shown that this definition is
consistent with the definition of Section 7. For example, consider theCTL

∗ formula
EFQ1 ∧ EFQ2 which is equivalent to mu-calculus formula(µZ.EXZ ∨ Q1) ∧
(µZ.EXZ ∨Q2). Their respective boundedQ-relativizationEF (Q∧Q1)∧EF (Q∧
Q2) (computed according to above) and(µZ.EX (Q∧Z)∨Q1)∧(µZ.EX (Q∧Z)∨Q2)
(computed according to Section 7) remain equivalent.
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We definê· : GL → QDCTL
∗ by induction: atomic propositions and⊤ are left

unchanged; formulas like¬ϕ, ϕ1 ∨ ϕ2 are dealt inductively, and we define

∃̂∃C.θ = ∃̂QC .(θ̂⌋QC)

Clearly, the size of̂ϕ is linear in the size ofϕ, for anyϕ ∈ GL. Also, since∃̂QC .α ∈
QDµ is definable inQDCTL

∗ providedα is, the co-domain of̂· is indeedQDCTL
∗.

Theorem 4. For any state formulaϕ ∈ GL, ϕS = [[ ϕ̂ ]]S .

By an easy adaptation of e.g. the procedure of [Dam94], statements inQDCTL
∗ can

be effectively expressed inQDµ.

7.3 A note on automata constructions for alternating time logics

Although our translation̂· of AMC or GL into QDµ may generate an arbitrary large
number of nested symbolŝ∃, the corresponding automata nevertheless remain small,
if their construction is carefully conducted; applying Theorem 2 is actually avoidable.
Because formulaŝϕ are obtained by bounded relativizations ofQDµ formulas, a quanti-
fied proposition never occurs in strict quantified sub-formulas. This observation enables
us to construct automata in a top-down manner, as opposed to the bottom-up procedure
of Theorem 2; due to lack of space, we refer the reader to [Pin07] for the proof details
of these constructions, which incidentally match the tightbounds from [AHK02].
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