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Logics of Programs Introductory Example

The Model-Checking Problem
The Model-checking Problem: A system Sys and a specification Spec,
decide whether Sys satisfies Spec, or not.
Example: Mutual exclusion protocol

Process 0: repeat
00: non-critical section 1
01: wait unless turn = 0
10: critical section 1
11: turn := 1

Process 1: repeat
00: non-critical section 2
01: wait unless turn = 1
10: critical section 2
11: turn := 0

A state is a bit vector of the form (line no. of process 1,line no. of
process 2, value of turn)
The initial state is (00000).
Spec = “some state of the form (1010x) is never reached”, and
“always when a state of the form (01xyz) is reached, then later a
state of the form (10x’y’z’) is reached” (and similarly for Process 2,
i.e. states (xy01z) and (x’y’10z’))
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Logics of Programs Kripke Structures

Kripke Structures

Assume given Prop = {p1, . . . , pn} a set of atomic propositions.

Definition

A Kripke structure over Prop is S = (S ,R , λ)

S is a set of states

R ⊆ S × S is a transition relation

λ : S → 2Prop associates those pi which are assumed true in s.

A rooted Kripke structure is a pair (S, s) where s is a distinguished initial
state
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Logics of Programs Kripke Structures

Mutual Exclusion Protocol Example

Let us use

Use p1 and p2 for “being in wait instruction before critical section”
for Process 0 and Process 1 respectively

Use p3 and p4 for “being in critical section” for Process 0 and
Process 1 respectively

The label function looks like λ(01101) = {p1, p4}; remember states are
(line no. of process 1,line no. of process 2, value of turn)

EXERCISE: Define the KS corresponding to the Mutual Exclusion Protocol
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Logics of Programs Kripke Structures

A Toy System

Over Prop = {p1, p2}.

{p1} s1

{p1, p2}

{p2}

s0

s3

s2

∅

λ(s2) = {p2}
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Logics of Programs Kripke Structures

Paths and Words

Let S = (S ,R , λ) be a Kripke structure over Prop = {p1, p2, . . . , pn}.

A path through (S, s) is a sequence s0, s1, s2, . . . where s0 = s and
(si , si+1) ∈ R for i ≥ 0

Its corresponding word (∈ (2Prop)ω) is λ(s0), λ(s1), λ(s2), . . ..

For example,

α = {p1, p2}{p1}{p2}{p1}∅∅∅ . . .

{p1} s1

{p1, p2}

{p2}

s0

s3

s2

∅

If α = α(0)α(1) . . . ∈ (2Prop)ω, write αi for α(i)α(i + 1) . . ..
So α = α0.
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Logics of Programs Behavioral Properties

Linear Time Logic for Properties of Words

[Eme90] We use modalities

G denotes “Always”
F denotes “Eventually”
X denotes “Next”
U denotes “Until”

The syntax of the logic LTL is:

ϕ1, ϕ2(� LTL) ::= a |ϕ1 ∨ ϕ2 | ¬ϕ1 |Xϕ1 |ϕ1 Uϕ2

where a ∈ Σ. LTL formulas are interpreted over words α ∈ Σω.

Note that the words may arise from a Kripke structure (S, s) over Prop
so that Σ = 2Prop.
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Logics of Programs Behavioral Properties

Semantics of LTL

Let α ∈ Σω. Define αi |= ϕ by induction over ϕ.

αi |= a iff α(i) = a

αi |= ϕ1 ∨ ϕ2 iff ...

αi |= ¬ϕ1 iff

αi |= Xϕ1 iff αi+1 |= ϕ1

αi |= ϕ1 Uϕ2 iff for some j ≥ i , αj |= ϕ2, and
for all k = i , . . . , j − 1, αk |= ϕ1

Let

⎧⎨
⎩

Fϕ
def
= trueUϕ, hence αi |= Fϕ iff αj |= ϕ for some j ≥ i .

Gϕ
def
= ¬F¬ϕ, hence αi |= Gϕ1 iff αj |= ϕ1 for every j ≥ i .
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Logics of Programs Behavioral Properties

Examples of formulas

1 α |= GFa iff “in α, a occurs infinitely often”.

2 α |= XX (b ⇒ Fc) iff “If α(2) = b, then α(j) = c for some j ≥ 2”.

3 α |= F(a ∧ X (b U a)) iff “... “ (EXERCISE)
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Logics of Programs Behavioral Properties

Augmenting LTL: the logic CTL∗

We want to specify that every word of (S, s) satisfies an LTL specification
ϕ, or that there exists a word in the Kripke structure such that something
holds. We use CTL∗ [EH83] which extends LTL with quantfications over
words:

ψ1, ψ2(� CTL∗) ::= Eψ | a |ψ1 ∨ ψ2 | ¬ψ1 |Xψ1 |ψ1 Uψ2

Semantics: for a word α, a position i , and a rooted Kripke structure (S, s):

αi |=(S,s) Eψ iff α′i |=(S,s) ψ for some α′ in (S, s)

st. α[0, . . . , i ] = α′[0, . . . , i ]

Let Aψ
def
= ¬E¬ψ

CTL∗ is more expressive than LTL: A [Glife ⇒ GEX death]
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Logics of Programs Behavioral Properties

Interpretation over Trees
We unravel S = (S ,R , λ) from s as a tree
Paths of S are retrieved in the tree as branches.

s0

s0s1

s0s1s1
s0s1s2

s0s1s1s1

s0s1s2

s0s1s1s2

s0s2
s0 s1

s2

S
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Logics of Programs Behavioral Properties

Interpretation over Trees
In the tree, we keep only the information about propositions in the
current state along the path.

λ(s0)

λ(s1)

λ(s1)
λ(s2)

λ(s1)

λ(s2)

λ(s2)

λ(s2)
s0 s1

s2

S
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Logics of Programs Behavioral Properties

Interpretation over Trees

We keep from the unraveling information about propositions

We assume that states have exactly two successors (ordered)

EXERCISE draw the corresponding tree
s0 s1

s2

S

We make a huge simplification:

we consider only Kripke structures which unravel as full binary trees

but the theory generalizes to arbitray structures.
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Logics of Programs Behavioral Properties

Σ-Labeled Full Binary Trees

The full binary tree is the set {0, 1}∗ of finite words over a two
element alphabet.

The root is the empty word ε.

A node is some w ∈ {0, 1}∗.

Every w ∈ {0, 1}∗ has two children: a left son w0 and a right son w1.

Definition

A Σ-labeled (full binary) tree is a function t : {0, 1}∗ → Σ.
Trees(Σ) is the set of Σ-labeled full binary trees.
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Logics of Programs Behavioral Properties

The full binary tree and a {a, b}-labeled tree

ε

0 1

00 01 10 11

a

a b

a b a b

t

Obviously, we will take Σ = 2Prop.
In the example, Prop = {p}, and say a = {p},b = ∅.
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The Mu-calculus

The (propositional) Mu-calculus
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The Mu-calculus

The Mu-calculus

invented by Dana Scott and Jaco de Bakker, and further developed
by Dexter Kozen

D. Kozen.
Results on the propositional μ-calculus. Theoretical Computer
Science, 27(3):333-354, 1983.

A. Arnold and D. Niwinski.
Rudiments of mu-calculus. North-Holland, 2001.

E. A. Emerson and C. S. Jutla.
Tree automata, mu-calculus and determinacy. In Proceedings 32nd
Annual IEEE Symp. on Foundations of Computer Science, FOCS’91,
San Jose, Puerto Rico, 1-4 Oct 1991, pages 368-377. IEEE Computer
Society Press, Los Alamitos, California, 1991.
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The Mu-calculus

The Mu-calculus

Fundamental importance for several reasons, all related to its
expressiveness:

Uniform logical framework with great raw expressive power. It
subsumes most modal and temporal logic of programs (e.g. LTL,
CTL, CTL∗).

the Mu-calculus over binary trees coincide in expressive power with
alternating tree automata.

the semantic of the Mu-calculus is anchored in the Tarski-Knaster
theorem, giving a means to do iteration-based model-checking in an
efficient manner.
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The Mu-calculus

Smooth Introduction

Consider the CTL formula EFP (where P is some proposition): note
that

EFP ≡ P ∨ EXEFP

so that EFP is a fixed-point.

In fact, EFP is the least fixed-point, e.g. the least such that
Z ≡ P ∨ EFZ .

Not all modalities of e.g. CTL are needed as a “basis”

BYO modalities with fixed-point definitions
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The Mu-calculus

About lattices and fixed-points

See “Introduction to Lattices and Order”, by B. A. Davey and H. A.
Priestley. Cambridge 2002.

A lattice (L,≤) consists of a set L and a partial order ≤ such that any pair
of elements has a greatest lower bound, the meet �, and a least upper
bound, the join �, with the following properties:

(associative law) (x � y) � z = x � (y � z)
(commutative law) x � y = y � x
(idempotency law) x � x = x
(absorption law) x � (x � y) = x

And similarly for �.

For example, given a set S , the powerset of S , (P(S),⊆), is a lattice.
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The Mu-calculus

Monotonic Functions

f : L → L is monotonic (order preserving) if

∀x , y ∈ L, x ≤ y ⇒ f (x) ≤ f (y)

x is a fixed-point of f if f (x) = x

Define f 0 is the identity function, and f n+1 = f n ◦ f .

Note that f monotonic implies that f n is monotonic. The identity
function is monotonic and composing two monotonic functions gives
a monotonic function.
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The Mu-calculus

Tarski-Knaster fixed-point Theorem
A lattice (L ≤,�,�) is complete if for all A ⊆ L, �A and �A are defined;
then there exist a minimum element ⊥= �L and a maximum element
� = �L.
This is the case for (P(S),⊆): given a set A ⊆ P(S) of subsets,
�A =

⋃
S ′∈A S ′ and �A =

⋂
S ′∈A S ′.

EXERCISE What are � and ⊥ ? �

Theorem

[Tar55] Let f be a monotonic function on (L,≤,�,�) a complete lattice.
Let A = {y | f (y) ≤ y}, then x = �A is the least fixed-point of f .

(1) f (x) ≤ x : ∀y ∈ A, x ≤ y , therefore f (x) ≤ f (y) ≤ y . So
f (x) ≤ �A = x .
(2) x ≤ f (x): by monotonicity applied to (1), f 2(x) ≤ f (x) so f (x) ∈ A,
and x ≤ f (x).
x is then a fixed-point, and because all fixed-points belong to A, x is the
least. And similarly for the greatest fixed-point (with A = {y | f (y) ≥ y}).
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The Mu-calculus

Another Characterization of fixed-points

(3) μz .f (z), the least fixed-point of f , is equal to �i f
i (∅), where i ranges

over all ordinals of cardinality at most the state space L; when L is finite,
μz .f (z) is the union of the following ascending chain ⊥⊆ f (⊥) ⊆ f 2(⊥)...

(4) νz .f (z) = �i f
i (�), where i ranges over all ordinals of cardinality at

most the state space L; when L is finite, νz .f (z) is the intersection of the
following descending chain � ⊇ f (�) ⊇ f 2(�)...

EXERCISE Show it. �
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The Mu-calculus The Mu-calculus

Syntax of the Mu-calculus

An alphabet Σ, and the associate set of propositions Prop = {Pa}a∈Σ.

A infinite set of variables Var = {Z ,Z ′,Y , . . . }.

Formulas

β, β′ ∈ Lμ ::= Pa |Z | ¬β |β ∧ β′ | 〈0〉β | 〈1〉β |μZ .β

where Pa ∈ Prop,Z ∈ Var .

Write 〈 〉β for 〈0〉β ∨ 〈1〉β, and [ ]β for 〈0〉β ∧ 〈1〉β.

β is a sentence if every occurrence of a variable in β are bounded by a
μ operator.

Write β′ ≤ β when β′ is a subformula of β.

As μZ .β is about a least fixed-point (see later for its semantics), we
need to ensure its existence, hence the notion of well-formed formulas.

well-formed formulas

For every subformula μZ .β, Z appears only under the scope of an even
number of ¬ symbols in β.

Sophie Pinchinat (IRISA) Logic, Automata, and Games M2RI 2011-2012 25 / 75

The Mu-calculus The Mu-calculus

Semantics of well-formed formulas

Fix a tree t ∈ Trees(Σ)

Let val : Var → 2{0,1}∗ be a valuation of the variables. For every
N ⊆ {0, 1}∗, we write val [N/Z ] for val ′ defined as val except that
val ′(Z ) = N

Given a tree t : {0, 1}∗ → Σ, [[ β ]]tval ⊆ {0, 1}∗ denotes a set of nodes.

[[ Z ]]tval = val(Z )
[[ Pa ]]tval = t−1(a)
[[ ¬β ]]tval = {0, 1}∗ \ [[ β ]]tval
[[ β ∧ β′ ]]tval = [[ β ]]tval ∩ [[ β′ ]]tval
[[ 〈0〉β ]]tval = {w ∈ {0, 1}∗ |w0 ∈ [[ β ]]tval}
[[ 〈1〉β ]]tval = {w ∈ {0, 1}∗ |w1 ∈ [[ β ]]tval}
[[ μZ .β ]]tval =

⋂
{N ∈ P({0, 1}∗) | [[ β ]]t

val [N/Z ] ⊆ N}
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The Mu-calculus The Mu-calculus

The meaning of μZ .β

Recall

[[ μZ .β ]]tval =
⋂

{N ∈ P({0, 1}∗) | [[ β ]]tval [N/Z ] ⊆ N}

μZ .β denotes the least fixed-point of

f : 2{0,1}∗ → 2{0,1}∗

f (N) = [[ β ]]t
val [N/Z ]

where f is monotonic, since β is well-formed.

By [Tar55] (for the lattice (2{0,1}∗ , ∅, {0, 1}∗ ,⊆)), f has a least
fixed-point (and a greatest fixed-point) and this is precisely the value
of [[ μZ .β ]]t .

Let νZ .β
def
= ¬μZ .¬β[¬Z/Z ]. It is a greatest fixed-point.

Notice that if β is sentence, then [[ μZ .β ]]tval = [[ μZ .β ]]tval ′ , for any
val , val ′; we write it [[ μZ .β ]]t .
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The Mu-calculus The Mu-calculus

Examples of formulas

We assume we have true and false in the syntax, with
[[ true ]]tval = {0, 1}∗ and [[ false ]]tval = ∅.

μZ .Z ≡ false

νZ .Z ≡ true

μZ .P ≡ νZ .P ≡ P
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The Mu-calculus The Mu-calculus

Examples of formulas: about CTL

What is “μZ .Pa ∨ 〈 〉Z” ?

It is equivalent to EFa, whereas νZ .Pa ∨ 〈 〉Z ≡ true

μZ .Pa ∨ 〈 〉Z ≡ Pa ∨ 〈 〉(μZ .Pa ∨ 〈 〉Z )
≡ Pa ∨ 〈 〉(Pa ∨ 〈 〉(μZ .Pa ∨ 〈 〉Z ))
≡ Pa ∨ 〈 〉(Pa ∨ 〈 〉(Pa ∨ 〈 〉(μZ .Pa ∨ 〈 〉Z )))
≡ ...

A node w ∈ [[ μZ .Pa ∨ 〈 〉Z ]]t if either it is in [[ Pa ]]t or it has a child
who is either in [[ Pa ]]t or who has a child who is in [[ Pa ]]t or who has
a child who ... The least set of nodes with this property is the set of
nodes having a path eventually hitting a descendant node labeled by
a. Hence the formula EF a.
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The Mu-calculus The Mu-calculus

A aU b ≡ μZ .Pb ∨ Pa ∧ [ ]Z , since

μZ .Pb ∨ Pa ∧ [ ]Z ≡ Pb ∨ Pa ∧ [ ](Pb ∨ Pa ∧ [ ](Pb ∨ Pa ∧ [ ](...)))

whereas νZ .Pb ∨ Pa ∧ [ ]Z ≡ A aW b, the weak until.

AG a ≡ νY .Pa ∧ [ ]Y , since

νY .Pa ∧ [ ]Y ≡ Pa ∧ [ ](Pa ∧ [ ](Pa ∧ [ ](...)))

whereas μZ .Pa ∧ [ ]Y ≡ false

AGEF a ≡ νY .(μZ .Pa ∨ 〈 〉Z ) ∧ [ ]Y

EGFb ≡ νY .μZ .〈 〉(b ∧ Y ∨ Z )

Intuitively, μ (resp. ν) refers to finite (resp. infinite) prefixes of
computations.

νZ .Pa ∧ [ ][ ]Z is not expressible in CTL∗ [MP71, Wol83].
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The Mu-calculus The Mu-calculus

Positive normal form

We push negation innermost in the formulas
⇒ formulas in positive normal form

Notice that ¬〈d〉β = 〈d〉¬β, for d ∈ {0, 1}.

EXERCISE What if we do not assume states always have
successors? (that is branches in the tree might be finite) �
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The Mu-calculus The Mu-calculus

Alternation Depth (±1 in the literature)

Let β ∈ Lμ be in positive normal form.
We define ad(β), the alternation depth of β inductively by:

ad(Pa) = ad(¬Pa) = ad(Z ) = 0

ad(β ∧ β′) = ad(β ∨ β′) = max{ad(β), ad(β′)}

ad(〈d〉β) = ad(β), for d ∈ {0, 1}

ad(μZ .β) = max({1, ad(β)} ∪ {ad(νZ ′.β′) + 1 | νZ ′.β′ ≤ β,Z ∈
free(νZ ′.β′)})

ad(νZ .β) = max({1, ad(β)} ∪ {ad(μZ ′.β′) + 1 |μZ ′.β′ ≤ β,Z ∈
free(μZ ′.β′)})

Example: ad(νY .(μZ .Pa ∨ 〈 〉Z ∧ [ ]Y )) = 2
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The Mu-calculus The Mu-calculus

Some important results

Write Lk
μ = {β ∈ Lμ | ad(β) ≤ k}.

CTL ⊆ L1
μ, and this is strict (recall νZ .Pa ∧ [ ][ ]Z is not expressible

in CTL∗)

ad(νY .μZ .(〈 〉Y ∧ Pa ∨ Z )) = 2, then EGFa is in L2
μ.

Theorem

[Arn99, Bra96, Len96] The alternation hierarchy L0
μ,L1

μ,L2
μ . . . is strict.

Theorem

[BGL07] The variable hierarchy of the μ-calculus is strict.
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The Mu-calculus Fundamental Questions

Model-checking and Satisfiability

Write t |= β whenever ε ∈ [[ β ]]tval .

Let L(β)
def
= {t ∈ Trees(Σ) | t |= β}

The Model-checking Problem (Program Verification):
Given regular tree t and a sentence β ∈ Lμ, is it the case that t |= β?

The Satisfiability Problem (Program Synthesis):
Does there exist a tree t such that t |= β?
Does there exist a regular tree? (The finite model property)

Definition (informal)

A tree is regular if it is obtained by unraveling a (finite) Kripke structure.
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The Mu-calculus Fundamental Questions

What next?

Tree Automata to recognize certain trees:

β ∈ Lμ � Aβ such that L(Aβ) = {t ∈ Trees(Σ) | t |= β}

The Model-checking Problem � The Membership Problem

The Satisfiability Problem � The Emptiness Problem

Games (two-player zero-sum) provide very powerful tools.
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Automata on Infinite Objects

Automata on Infinite Objects

Sophie Pinchinat (IRISA) Logic, Automata, and Games M2RI 2011-2012 36 / 75



Automata on Infinite Objects Generalities

Automata on Infinite Objects

Automata with inputs like infinite words and infinite trees (and graphs).

Automata on Infinite Trees [Rab69], [GH82, Mul84, EJ91], [GTW02,
Chap. 8 and 9]

� Acceptance conditions: Büchi, Muller, Rabin and Streett, Parity on
every branch of the run of the automaton on its input.

� Runs are trees, and accepting runs fulfill the acceptance condition.
� We consider parity acceptance condition.

Also ω-automata are automata on infinite words [Büc62, McN66],
[Tho90], [GTW02, Chap. 1]

� Acceptance conditions: Büchi, Muller, Rabin and Streett, Parity
� Runs are paths, accepting runs fulfill the accepting condition.
� All coincide with ω-regular languages (L =

⋃
i KiR

ω

i ) – deterministic
Büchi are weaker.

� Connection with Logic LTL: LTL corresponds to FOL as well as
star-free ω-regular languages.
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Non-deterministic Parity Tree Automata

A (Σ-labeled full binary) tree t is input of an automaton.

In a current node in the tree, the automaton has to decide which
state to assume in each of the two child nodes.

Definition

A non-deterministic parity tree (NDPT) automaton is a structure
A = (Q,Σ, q0, δ, c) where

� Q(� q0) is a finite set of states (q0 the initial state)

� δ ⊆ Q × Σ × Q × Q is the transition relation

� c : Q → {0, . . . , k}, k ∈ IN is the coloring function which assigns the index
values (colors) to each states of A

Sophie Pinchinat (IRISA) Logic, Automata, and Games M2RI 2011-2012 38 / 75

Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Runs

Definition

A run of A = (Q,Σ, q0, δ, c) on an input tree t ∈ Trees(Σ) is a tree
ρ ∈ Trees(Q) satisfying

ρ(ε) = q0, and

for every node w ∈ {0, 1}∗ of t (and its sons w0 and w1), we have

(ρ(w0), ρ(w1)) ∈ δ(ρ(w), t(w))
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Example

Consider the automaton with states qa (initial) and �, and the following
transitions:

b

b b

b a b

b

a

baa
b b

bb

qa

qa qa

qa qa qa

qa

qa

qaqaqa

� �

��

δ(qa, a) = {(�,�)} δ(qa, b) = {(qa, qa)}
δ(�, a) = {(�,�)} δ(�, b) = {(�,�)}

with c(qa) = 1 and c(�) = 0.
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

The parity acceptance condition

Given a run ρ, for a branch γ in ρ write

Infc(γ)
def
= {j ∈ {0, . . . , k} | c(γ(i)) = j for infinitely many i}

A run ρ is accepting (successful) iff for every branch γ ∈ {0, 1}ω of
the tree ρ the parity acceptance condition is satisfied:

min Infc(γ) is even
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Example 1

Let L0 be the set of trees the branches of which all contain an a.
This may be expressed in Lμ as μZ .Pa ∨ [ ]Z in Lμ.

L0 may be characterized by the following tree automaton

δ(qa, a) = {(�,�)} δ(qa, b) = {(qa, qa)}
δ(�, a) = {(�,�)} δ(�, b) = {(�,�)}

with qa initial, c(qa) = 1, and c(�) = 0.
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Example 2

Tree automata are nondeterministic, and cannot be determinized in
general.

Let L∞a ⊆ Trees({a, b}) be the set of trees having a branch with
infinitely many a’s.

Consider the automaton with states qa, qb,� and transitions
(∗ stands for either a or b).

δ(q∗, a) = {(qa,�), (�, qa)}
δ(q∗, b) = {(qb,�), (�, qb)}
δ(�, ∗) = {(�,�)}

and coloring c(qb) = 1 and c(qa) = c(�) = 0
(only 0 and 1 colors, this a Büchi condition)
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Example 2 (Cont.)

δ(q∗, a) = {(qa,�), (�, qa)}
δ(q∗, b) = {(qb,�), (�, qb)}
δ(�, ∗) = {(�,�)}
with c(qb) = 1 and c(qa) = c(�) = 0

From state �, A accepts any tree.

Any run from qa consists in a tree with of a single branch labeled with
states qa, qb, whereas the rest of the run tree is labeled with �.
There are infinitely many states qa on this branch iff there are
infinitely many nodes labeled by a.
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Acceptance

A tree t is accepted by A iff there exists an accepting run of A on t.

The tree language recognized by A is

L(A)
def
= {t | t is accepted by A}
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Other Acceptance Conditions

Büchi is specified by a set F ⊆ Q

Acc = {γ | Inf (γ) ∩ F �= ∅}

Muller is specified by a set F ⊆ P(Q),

Acc = {γ | Inf (γ) ∈ F}

Rabin is specified by a set {(R1,G1), . . . , (Rk ,Gk)} where Ri ,Gj ⊆ Q,

Acc = {γ | ∀i , Inf (γ) ∩ Ri = ∅ and Inf (γ) ∩ Gi �= ∅}

Streett is specified by a set {(R1,G1), . . . , (Rk ,Gk)} where
Ri ,Gj ⊆ Q,

Acc = {γ | ∀i , Inf (γ) ∩ Ri = ∅ or Inf (γ) ∩ Gi �= ∅}
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Other Acceptance Conditions

For the relationship between these conditions see [GTW02].

Büchi is specified by a set F ⊆ Q and this acceptabce condition for
runs is:

Acc = {γ | Inf (γ) ∩ F �= ∅}

Büchi tree automata are less expressive than the other acceptance
conditions (which are equivalent) [Rab70]: for example, the
complement of L∞a , that is finitely many a’s on each branch, cannot
be characterized by any Büchi tree automaton.
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Automata on Infinite Objects Non-deterministic Parity Tree (NDPT) Automata

Regular Tree Languages and Properties

A tree language L ⊆ Trees(Σ) is regular iff there exists a parity tree
automaton which recognizes L.

Tree automata are closed under sum, projection, and
complementation.

� Tree automata cannot be determinized: L∃

a ⊆ Trees({a, b}), the
language of trees having one node labeled by a, is not recognizable by
a deterministic tree automata (with any of the considered acceptance
conditions).

� The proof for complementation uses the determinization result for word
automata. Difficult proof [GTW02, Chap. 8], [Rab70]

We will solve the Membership Problem and the Emptiness Problem
for (nondeterministic) automata by using Parity Games.
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Games Generalities

(Parity) Games

Sophie Pinchinat (IRISA) Logic, Automata, and Games M2RI 2011-2012 49 / 75

Games Generalities

(Parity) Games

Two-person games on directed graphs.

How are they played?

What is a strategy? What does it mean to say that a player wins the
game?

Determinacy, forgetful strategies, memoryless strategies
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Games Generalities

Arena

An arena (or a game graph) is

G = (V0,V1,E )

V0 = Player 0 positions, and V1 = Player 1 positions (partition of V )

E ⊆ V × V is the edged-relation

write σ ∈ {0, 1} to designate a player, and σ = 1 − σ
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Games Generalities
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Games Generalities

color 0 and the rest is colored 1
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Games Generalities

Plays

Formally, a play in the arena G is either
� an infinite path π = v0v1v2 . . . ∈ V ω with vi+1 ∈ viE for all i ∈ ω, or
� a finite path π = v0v1v2 . . . vl ∈ V + with vi+1 ∈ viE for all i < l , but

vlE = ∅.
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Games Generalities

Games and Winning sets

Let be G an arena and Win ⊆ V ω be the winning condition

Player 0 is declared the winner of a play π in the game G if
� π is finite and last(π) ∈ V1 and last(π)E = ∅, or
� π is infinite and π ∈ Win.
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Games Parity Games

Parity Winning Conditions

Informally, an infinite play is winning if the minimal color that occurs
infinitely often even.

Formally

We color vertices of the arena by χ : V → C where C is a finite set of
so-called colors; it extends to plays χ(π) = χ(v0)χ(v1)χ(v2) . . ..

C is a finite set of integers called priorities

Let Infχ(π) be the set of colors that occurs infinitely often in χ(π).

Win is the set of infinite paths π such that min(InfC (π)) is even.
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Games Parity Games

Example of a parity game

color 0 and the rest is colored 1
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Games Parity Games

Strategies and winning region

A strategy for Player σ is a function fσ: V ∗Vσ → V

A prefix play π = v0v1v2 . . . vl is conform with fσ if for every i with
0 ≤ i < l and vi ∈ Vσ the function fσ is defined and we have
vi+1 = fσ(v0 . . . vi ).

A play is conform with fσ if each of its prefix is conform with fσ.

The winning region for Player σ is the set Wσ(G) ⊆ V of all vertices
such that Player σ wins (G, v) (to be defined rigorously)
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Games Parity Games

Example of Winning Regions

color 0 and the rest is colored 1W1

W0
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Games Memoryless Determinacy of Parity Games

Determinacy of Parity Games

A game G = ((V ,E ),Win) is determined when
the sets Wσ(G) and Wσ(G) form a partition of V .

Theorem

Every parity game is determined.

A strategy fσ is a positional (or memoryless) strategy whenever

fσ(πv) = fσ(π′v),∀v ∈ Vσ

Theorem

[EJ91, Mos91] In every parity game, both players win memoryless.

See [GTW02, Chaps. 6 and 7]
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Games Solving Parity Games

Complexity Results

Theorem

Wins =
{(G, v) | G a finite parity game and v a winning position of Player 0}
is in NP ∩ co-NP

1 Guess a memoryless strategy f of Player 0

2 Check whether f is memoryless winning strategy

[BJW02] proposed a reduction from parity games to safety games, that
leads to an algorithm in O(n(n/k)�k/2�) (k + 1 colors).

EXERCISE How would you solve a safety game? �
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Membership and Emptiness Problems for NDPT Automata

Back to Decision Problems for ND Tree Automata

The Membership Problem: A � GA,t

1 Given a tree t and an NDPT automaton A, we build a parity game
(GA,t , vI ) s.t. vI is in W0(GA,t) iff t ∈ L(A).

Moreover, if t is regular (i.e. represented by a finite KS (S, s)), we
can build a finite game.

The Emptiness Problem: A � A′
� GA′

1 For each parity automaton A, we build an Input Free automaton A′

such that L(A) �= ∅ iff A′ admits a successful run.

2 From A′ we build a parity game GA′ such that (winning) strategies of
Player 0 and (successful) runs of A′ correspond.

Both problem reduce to solving parity games!
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Membership and Emptiness Problems for NDPT Automata

The Membership Problem: The Game Graph GA,t

0-positions are of the form (w , t(w), q).
Moves from (w , t(w), ), with
δ(q, t(w)) = {(q′

1, q”1), (q
′
2, q”2), . . . (q

′
m, q”m)} are:

(w , t(w), q)

(w , t(w), (q, t(w), q′
1, q”1))

(w , t(w), (q, t(w), q′
2, q”2))

(w , t(w), (q, t(w), q′
m, q”m))

.

.

.

Player 0 chooses the transition (q, t(w), q′, q”) from q for input t(w)
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Membership and Emptiness Problems for NDPT Automata

The Game Graph GA,t

1-positions are of the form (w , t(w), (q, t(w), q′, q”)).
2 possible moves from (w , t(w), (q, t(w), q′, q”)):

(w,t(w),(q,t(w),q’,q”))

(w0, t(w0), q′)

(w1, t(w1), q”)

Player 1 chooses the branch in the run (left q′, or right q”)

Sophie Pinchinat (IRISA) Logic, Automata, and Games M2RI 2011-2012 62 / 75



Membership and Emptiness Problems for NDPT Automata

The Game Graph GA,t

A = (Q,Σ, q0, δ, c)

V0 = set of triples (w , t(w), q) ∈ {0, 1}∗ × Σ × Q

V1 = set of triples (w , t(w), τ) ∈ {0, 1}∗ × Σ × δ

Moves ...

Initial position in (ε, t(ε), q0) ∈ V0

Priorities:
χ((w , t(w), q)) = c(q)
χ((w , t(w), (q, t(w), q′, q”))) = c(q)
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Membership and Emptiness Problems for NDPT Automata

The Game Graph GA,t

V0: (w , t(w), state q)

V1: (w , t(w), transition (q, t(w), q′, q”))

Moves from V0: from (w , t(w), q), Player 0 can move to
(w , t(w), (q, t(w), q′, q”)), for every (q, t(w), q′, q”) ∈ δ

Moves from V0: from (w , t(w), (q, t(w), q′, q”)), Player 1 can moves
to (w0, t(w0), q′) or to (w1, t(w1), q”).
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Membership and Emptiness Problems for NDPT Automata

The Finite Game with a Regular Tree
s0

s1 s2

0

1

1

0 0, 1

b

a

b

With the automaton:

δ(q∗, a) = {(qa,�), (�, qa)}
δ(q∗, b) = {(qb,�), (�, qb)}
δ(�, ∗) = {(�,�)}

c(qa) = c(�) = 0
c(qb) = 1

b

a

a

b

b

a

s0

s1

s0

s1

s0

s1

bb
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Membership and Emptiness Problems for NDPT Automata

Example of GA,t

s0, b, qa

s0, b, (qa, b, qb,�)

s0, b, (qa, b,�, qb)

s1, a, qb s2, b,�

s1, a, (qb, a, qa,�)

s1, a, (�, a,�, qa)

s2, b, (�, b,��)

s1, a,�

s2, b, qb

s1, a, (�, a,�,�)

s2, b, (qb, b, qb,�) s2, b, (qb, b,�, qb)

s2, b, qb,

0

0

0

0

1

0

11

1 0

1
0

0

0

1

s2, b, qa

priorities
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Membership and Emptiness Problems for NDPT Automata

The Emptiness Problem of NDTA

We need the notion of input-free automata.

An input-free (IF) automaton is A′ = (Q, δ, qI ,Acc) where
δ ⊆ Q × Q × Q.

Lemma

For each parity automaton A there exists an IF automaton A′ such that
L(A) �= ∅ iff A′ admits a successful run.

A = (Q,Σ, q0, δ, c) and define A′ = (Q × Σ, {qI} × Σ, δ′, c ′).
A′ will guess non-deterministically the second component of its
states, i.e. the labeling of a model. Formally,

� for each (q, a, q′, q”) ∈ δ, we generate ((q, a), (q′, x), (q”, y)) ∈ δ′, if
(q′, x , p, p′), (q”, y , r , r ′) ∈ δ for some p, p′, q, q′ ∈ Q

� c ′(q, a) = c(q)

Sophie Pinchinat (IRISA) Logic, Automata, and Games M2RI 2011-2012 67 / 75

Membership and Emptiness Problems for NDPT Automata

Example IF Automaton

A � B
(qa, a, qa,�), (qa, a,�, qa) � ((qa, a), (qa, a), (�, a)), ((qa, a), (�, a), (qa, a))

((qa, a), (qa, b), (�, a)), ((qa, a), (�, b), (qa, a))
((qa, a), (qa, a), (�, b)), ((qa, a), (�, a), (qa, b))
((qa, a), (qa, b), (�, b)), ((qa , a), (�, b), (qa, b))

(qa, b, qb,�), (qa, b,�, qb) � ((qa, b), (qb, a), (�, a)), ((qa, a), (�, a), (qb , a))
((qa, b), (qb, b), (�, a)), ((qa , a), (�, b), (qb, a))
((qa, b), (qb, a), (�, b)), ((qa , a), (�, a), (qb, b))
((qa, b), (qb, b), (�, b)), ((qa , a), (�, b), (qb , b))

(qb, a, qa,�), (qb, a,�, qa) � . . . (qb, b, qb,�), (qb, b,�, qb) � . . .

(�, a,�,�) � ((�, a), (�, a), (�, a))
((�, a), (�, b), (�, a))
((�, a), (�, a), (�, b))
((�, a), (�, b), (�, b))

(�, b,�,�) � . . .

c ′((qa, ∗)) = c(qa) = 0, c ′((�, ∗)) = c(�) = 0, c ′((qb, ∗)) = c(qb) = 1
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Membership and Emptiness Problems for NDPT Automata

From IF Automata to Parity Games

A an IF automaton � a parity game GA

Positions V0 = Q and V1 = δ

Moves for all (q, q′, q′′) ∈ δ
� (q, (q, q′, q”)) ∈ E
� ((q, q′, q”), q′), ((q, q′, q”), q”) ∈ E

Priorities χ(q) = c(q) = χ((q, q′, q”))

Lemma

(Winning) Strategies of Player 0 and (successful) runs of A correspond.

Notice that GA has a finite number of positions.
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Membership and Emptiness Problems for NDPT Automata

Example of GA

�, aqa, a

qa, a

�, aqa, b

qa, a

�, bqa, b

qa, a

�, a�, a

�, a

�, a�, b

�, a

�, b�, b

�, a

qa, a

�, a

0

0

00

0

0
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Membership and Emptiness Problems for NDPT Automata

Decidability of Emptiness for NDPT Automata

Theorem

For parity tree automata it is decidable whether their recognized language
is empty or not.

A � A′
� GA′ , and combined previous results.
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Membership and Emptiness Problems for NDPT Automata

Finite Model Property

Corollary

If L(A) �= ∅ then L(A) contains a regular tree.

Use the memoryless winning strategy in GA′ .

Formally, take A and its corresponding IF automatan A′. Assume a
successful run of A′ and a memoryless strategy f for Player 0 in GA′ from
some position (qI , a).
The subgraph GA′

f
induces a deteministic IF automaton A” (without acc):

extract the transitions out of GAf
from positions in V1. A” is a

subautomaton of A′.
A” generates a regular tree t in the second component of its states. Now,
t ∈ L(A) because A′ behaves like A.
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Membership and Emptiness Problems for NDPT Automata

Complexity Issues

Corollary

The Emptiness Problem for NDPT automata is in NP ∩ co-NP.

Notice that the size of GA′ is polynomial in the size of A
(see [GTW02, p. 150, Chap. 8]).

Remark

The universality problem is EXPTIME-complete (already for finite trees).
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Concluding remarks

What we have seen

Binary trees as a simplified setting to represent system’s executions.

Propositional μ-calculus that subsumes all branching-time temporal
logics (LTL, CTL, CTL∗, PDL, . . . ).

Non-determinsitic tree automata (NDTA) to recognize regular tree
languages.

(Parity) games as abstract mathematical tools to, e.g. check
emptiness and membership problems for NDTA.
⇒ The emptiness problem for NDTA is in NP ∩ co-NP .
⇒ Memoryless strategies deliver regular objects.

In particular, NDTA have the finite model property.

Sophie Pinchinat (IRISA) Logic, Automata, and Games M2RI 2011-2012 74 / 75



Concluding remarks

What we have not seen

A generalization of NDTA as Alternating Tree Automata (ATA) and
the Simulation Theorem [MS95] that states an exponential time
procedure to convert ATA into NDTA.
⇒ ATA have the finite model property.
⇒ Checking emptiness of ATA is in EXPTIME (in fact, complete).
BUT checking membership for ATA is in NP ∩ co-NP .

The two-way translation μ-calculus formulas ↔ ATA.
⇒ The μ-calculus has the finite model property.
⇒ Satisfiability of μ-calculus formulas is in EXPTIME .
⇒ Model-checking μ-calculus formulas is in NP ∩ co-NP .
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