Logic, Automata, and Games

Sophie Pinchinat

IRISA, university of Rennes 1, France
M2RI 2011-2012
(1) Logics of Programs

- Introductory Example
- Kripke Structures
- Behavioral Properties
(2) The Mu-calculus
- The Mu-calculus
- Fundamental Questions
(3) Automata on Infinite Objects
- Generalities
- Non-deterministic Parity Tree (NDPT) Automata
(4) Games
- Generalities
- Parity Games
- Memoryless Determinacy of Parity Games
- Solving Parity Games
(5) Membership and Emptiness Problems for NDPT Automata
(6) Concluding remarks

The Model-Checking Problem

The Model-checking Problem: A system Sys and a specification Spec, decide whether Sys satisfies Spec, or not.
Example: Mutual exclusion protocol

Process 0: repeat 00: non-critical section 1
01: wait unless turn $=0$
10: critical section 1
11: turn := 1

Process 1: repeat
00: non-critical section 2
01: wait unless turn $=1$
10: critical section 2
11: turn $:=0$

- A state is a bit vector of the form (line no. of process 1 ,line no. of process 2 , value of turn)
- The initial state is (00000).
- Spec $=$ "some state of the form (1010x) is never reached", and "always when a state of the form ($01 \times y z$) is reached, then later a state of the form ($10 x^{\prime} y^{\prime} z^{\prime}$) is reached" (and similarly for Process 2, i.e. states ($x y 01 z$) and ($\left.x^{\prime} y^{\prime} 10 z^{\prime}\right)$)

Kripke Structures

Assume given Prop $=\left\{p_{1}, \ldots, p_{n}\right\}$ a set of atomic propositions.

Definition

A Kripke structure over Prop is $\mathcal{S}=(S, R, \lambda)$

- S is a set of states
- $R \subseteq S \times S$ is a transition relation
- $\lambda: S \rightarrow 2^{\text {Prop }}$ associates those p_{i} which are assumed true in s.

A rooted Kripke structure is a pair (\mathcal{S}, s) where s is a distinguished initial state

Mutual Exclusion Protocol Example

Let us use

- Use p_{1} and p_{2} for "being in wait instruction before critical section" for Process 0 and Process 1 respectively
- Use p_{3} and p_{4} for "being in critical section" for Process 0 and Process 1 respectively
The label function looks like $\lambda(01101)=\left\{p_{1}, p_{4}\right\}$; remember states are (line no. of process 1 ,line no. of process 2 , value of turn)

EXERCISE: Define the KS corresponding to the Mutual Exclusion Protocol

A Toy System

Over Prop $=\left\{p_{1}, p_{2}\right\}$.

$$
\lambda\left(s_{2}\right)=\left\{p_{2}\right\}
$$

Paths and Words

Let $\mathcal{S}=(S, R, \lambda)$ be a Kripke structure over Prop $=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

- A path through (\mathcal{S}, s) is a sequence $s_{0}, s_{1}, s_{2}, \ldots$ where $s_{0}=s$ and $\left(s_{i}, s_{i+1}\right) \in R$ for $i \geq 0$
- Its corresponding word $\left(\in\left(2^{\text {Prop }}\right)^{\omega}\right)$ is $\lambda\left(s_{0}\right), \lambda\left(s_{1}\right), \lambda\left(s_{2}\right), \ldots$.

For example,
$\alpha=\left\{p_{1}, p_{2}\right\}\left\{p_{1}\right\}\left\{p_{2}\right\}\left\{p_{1}\right\} \emptyset \emptyset \emptyset \ldots$

- If $\alpha=\alpha(0) \alpha(1) \ldots \in\left(2^{\text {Prop }}\right)^{\omega}$, write α^{i} for $\alpha(i) \alpha(i+1) \ldots$.

So $\alpha=\alpha^{0}$.

Linear Time Logic for Properties of Words

[Eme90] We use modalities

\mathbf{G}	denotes	"Always"
\mathbf{F}	denotes	"Eventually"
\mathbf{X}	denotes	"Next"
\mathbf{U}	denotes	"Until"

The syntax of the logic LTL is:

$$
\varphi_{1}, \varphi_{2}(\ni L T L)::=a\left|\varphi_{1} \vee \varphi_{2}\right| \neg \varphi_{1}\left|\mathbf{X} \varphi_{1}\right| \varphi_{1} \mathbf{U} \varphi_{2}
$$

where $a \in \Sigma$. LTL formulas are interpreted over words $\alpha \in \Sigma^{\omega}$.

Note that the words may arise from a Kripke structure (\mathcal{S}, s) over Prop so that $\Sigma=2^{\text {Prop }}$.

Semantics of LTL

Let $\alpha \in \Sigma^{\omega}$. Define $\alpha^{i} \models \varphi$ by induction over φ.

- $\alpha^{i} \models a$ iff $\alpha(i)=a$
- $\alpha^{i} \models \varphi_{1} \vee \varphi_{2}$ iff ...
- $\alpha^{i} \models \neg \varphi_{1}$ iff
- $\alpha^{i} \models \mathbf{X} \varphi_{1}$ iff $\alpha^{i+1} \models \varphi_{1}$
- $\alpha^{i} \models \varphi_{1} \mathbf{U} \varphi_{2}$ iff for some $j \geq i, \alpha^{j} \models \varphi_{2}$, and for all $k=i, \ldots, j-1, \alpha^{k} \models \varphi_{1}$

Let $\left\{\begin{array}{l}\mathbf{F} \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathbf{U} \varphi, \text { hence } \alpha^{i} \models \mathbf{F} \varphi \text { iff } \alpha^{j} \models \varphi \text { for some } j \geq i . \\ \mathbf{G} \varphi \stackrel{\text { def }}{=} \neg \mathbf{F} \neg \varphi, \text { hence } \alpha^{i} \models \mathbf{G} \varphi_{1} \text { iff } \alpha^{j} \models \varphi_{1} \text { for every } j \geq i .\end{array}\right.$

Examples of formulas

(1) $\alpha \models$ GFa iff "in α, a occurs infinitely often".
(2) $\alpha \models \mathbf{X X}(b \Rightarrow \mathbf{F} c)$ iff "If $\alpha(2)=b$, then $\alpha(j)=c$ for some $j \geq 2$ ".
(3) $\alpha \models \mathbf{F}(a \wedge \mathbf{X}(b \mathbf{U} a))$ iff "..." (EXERCISE)

Augmenting LTL: the logic CTL*

We want to specify that every word of (\mathcal{S}, s) satisfies an LTL specification φ, or that there exists a word in the Kripke structure such that something holds. We use CTL* [EH83] which extends LTL with quantfications over words:

$$
\psi_{1}, \psi_{2}\left(\ni C T L^{*}\right)::=\mathbf{E} \psi|a| \psi_{1} \vee \psi_{2}\left|\neg \psi_{1}\right| \mathbf{X} \psi_{1} \mid \psi_{1} \mathbf{U} \psi_{2}
$$

Semantics: for a word α, a position i, and a rooted Kripke structure (\mathcal{S}, s) :

$$
\begin{aligned}
& \alpha^{i} \models_{(\mathcal{S}, s)} \mathbf{E} \psi \quad \text { iff } \quad \alpha^{\prime i} \models_{(\mathcal{S}, s)} \psi \text { for some } \alpha^{\prime} \text { in }(\mathcal{S}, \boldsymbol{s}) \\
& \text { st. } \alpha[0, \ldots, i]=\alpha^{\prime}[0, \ldots, i]
\end{aligned}
$$

Let $\mathbf{A} \psi \stackrel{\text { def }}{=} \neg \mathbf{E} \neg \psi$
CTL* is more expressive than LTL: $\mathbf{A}[\mathbf{G}$ life $\Rightarrow \mathbf{G E X}$ death $]$

Interpretation over Trees

- We unravel $\mathcal{S}=(S, R, \lambda)$ from s as a tree
- Paths of \mathcal{S} are retrieved in the tree as branches.

\mathcal{S}

Interpretation over Trees

- In the tree, we keep only the information about propositions in the current state along the path.

\mathcal{S}

Interpretation over Trees

- We keep from the unraveling information about propositions
- We assume that states have exactly two successors (ordered)

$$
\mathcal{S}
$$

EXERCISE draw the corresponding tree

We make a huge simplification:
 we consider only Kripke structures which unravel as full binary trees but the theory generalizes to arbitray structures.

Σ-Labeled Full Binary Trees

- The full binary tree is the set $\{0,1\}^{*}$ of finite words over a two element alphabet.
- The root is the empty word ϵ.
- A node is some $w \in\{0,1\}^{*}$.
- Every $w \in\{0,1\}^{*}$ has two children: a left son $w 0$ and a right son $w 1$.

Definition

A Σ-labeled (full binary) tree is a function $t:\{0,1\}^{*} \rightarrow \Sigma$. $\operatorname{Trees}(\Sigma)$ is the set of Σ-labeled full binary trees.

The full binary tree and a $\{a, b\}$-labeled tree

Obviously, we will take $\Sigma=2^{\text {Prop }}$. In the example, Prop $=\{p\}$, and say $a=\{p\}, b=\emptyset$.

The (propositional) Mu-calculus

The Mu-calculus

- invented by Dana Scott and Jaco de Bakker, and further developed by Dexter Kozen
- D. Kozen.

Results on the propositional μ-calculus. Theoretical Computer Science, 27(3):333-354, 1983.

- A. Arnold and D. Niwinski.

Rudiments of mu-calculus. North-Holland, 2001.

- E. A. Emerson and C. S. Jutla.

Tree automata, mu-calculus and determinacy. In Proceedings 32nd Annual IEEE Symp. on Foundations of Computer Science, FOCS'91, San Jose, Puerto Rico, 1-4 Oct 1991, pages 368-377. IEEE Computer Society Press, Los Alamitos, California, 1991.

The Mu-calculus

Fundamental importance for several reasons, all related to its expressiveness:

- Uniform logical framework with great raw expressive power. It subsumes most modal and temporal logic of programs (e.g. LTL, CTL, CTL*).
- the Mu-calculus over binary trees coincide in expressive power with alternating tree automata.
- the semantic of the Mu-calculus is anchored in the Tarski-Knaster theorem, giving a means to do iteration-based model-checking in an efficient manner.

Smooth Introduction

- Consider the CTL formula EFP (where P is some proposition): note that

$$
\mathbf{E F} P \equiv P \vee \mathbf{E X E F} P
$$

so that EFP is a fixed-point.

- In fact, EFP is the least fixed-point, e.g. the least such that $Z \equiv P \vee \mathbf{E F} Z$.
- Not all modalities of e.g. CTL are needed as a "basis"

BYO modalities with fixed-point definitions

About lattices and fixed-points

See "Introduction to Lattices and Order", by B. A. Davey and H. A. Priestley. Cambridge 2002.

A lattice (L, \leq) consists of a set L and a partial order \leq such that any pair of elements has a greatest lower bound, the meet Π, and a least upper bound, the join \sqcup, with the following properties:
(associative law) $\quad(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$
(commutative law)
(idempotency law)
(absorption law)
$x \sqcup y=y \sqcup x$
$x \sqcup x=x$
$x \sqcup(x \sqcap y)=x$
And similarly for \sqcap.

For example, given a set S, the powerset of $S,(\mathcal{P}(S), \subseteq)$, is a lattice.

Monotonic Functions

- $f: L \rightarrow L$ is monotonic (order preserving) if

$$
\forall x, y \in L, x \leq y \Rightarrow f(x) \leq f(y)
$$

- x is a fixed-point of f if $f(x)=x$
- Define f^{0} is the identity function, and $f^{n+1}=f^{n} \circ f$.
- Note that f monotonic implies that f^{n} is monotonic. The identity function is monotonic and composing two monotonic functions gives a monotonic function.

Tarski-Knaster fixed-point Theorem

A lattice $(L \leq, \sqcup, \sqcap)$ is complete if for all $A \subseteq L, \sqcup A$ and $\sqcap A$ are defined; then there exist a minimum element $\perp=\Pi L$ and a maximum element $\top=\sqcup L$.
This is the case for $(\mathcal{P}(S), \subseteq)$: given a set $A \subseteq \mathcal{P}(S)$ of subsets, $\sqcup A=\bigcup_{S^{\prime} \in A} S^{\prime}$ and $\sqcap A=\bigcap_{S^{\prime} \in A} S^{\prime}$.
EXERCISE What are T and \perp ?

Theorem

[Tar55] Let f be a monotonic function on $(L, \leq, \sqcup, \sqcap)$ a complete lattice. Let $A=\{y \mid f(y) \leq y\}$, then $x=\sqcap A$ is the least fixed-point of f.
(1) $f(x) \leq x: \forall y \in A, x \leq y$, therefore $f(x) \leq f(y) \leq y$. So $f(x) \leq \sqcap A=x$.
(2) $x \leq f(x)$: by monotonicity applied to (1), $f^{2}(x) \leq f(x)$ so $f(x) \in A$, and $x \leq f(x)$.
x is then a fixed-point, and because all fixed-points belong to A, x is the least. And similarly for the greatest fixed-point (with $A=\{y \mid f(y) \geq y\}$).

Another Characterization of fixed-points

(3) $\mu z . f(z)$, the least fixed-point of f, is equal to $\sqcup_{i} f^{i}(\emptyset)$, where i ranges over all ordinals of cardinality at most the state space L; when L is finite, $\mu z . f(z)$ is the union of the following ascending chain $\perp \subseteq f(\perp) \subseteq f^{2}(\perp) \ldots$
(4) $\nu z . f(z)=\sqcap_{i} f^{i}(T)$, where i ranges over all ordinals of cardinality at most the state space L; when L is finite, $\nu z . f(z)$ is the intersection of the following descending chain $T \supseteq f(T) \supseteq f^{2}(T) \ldots$

EXERCISE Show it.

Syntax of the Mu-calculus

- An alphabet Σ, and the associate set of propositions $\operatorname{Prop}=\left\{P_{a}\right\}_{a \in \Sigma}$.
- A infinite set of variables Var $=\left\{Z, Z^{\prime}, Y, \ldots\right\}$.
- Formulas

$$
\beta, \beta^{\prime} \in L_{\mu}::=P_{a}|Z| \neg \beta\left|\beta \wedge \beta^{\prime}\right|\langle 0\rangle \beta|\langle 1\rangle \beta| \mu Z . \beta
$$

where $P_{a} \in \operatorname{Prop}, Z \in \operatorname{Var}$.

- Write $\rangle \beta$ for $\langle 0\rangle \beta \vee\langle 1\rangle \beta$, and [] β for $\langle 0\rangle \beta \wedge\langle 1\rangle \beta$.
- β is a sentence if every occurrence of a variable in β are bounded by a μ operator.
- Write $\beta^{\prime} \leq \beta$ when β^{\prime} is a subformula of β.
- As $\mu Z . \beta$ is about a least fixed-point (see later for its semantics), we need to ensure its existence, hence the notion of well-formed formulas.

well-formed formulas

For every subformula $\mu Z . \beta, Z$ appears only under the scope of an even number of \neg symbols in β.

Semantics of well-formed formulas

- Fix a tree $t \in \operatorname{Trees}(\Sigma)$
- Let val: Var $\rightarrow 2^{\{0,1\}^{*}}$ be a valuation of the variables. For every $N \subseteq\{0,1\}^{*}$, we write val $[N / Z]$ for val' defined as val except that $v a l^{\prime}(Z)=N$
- Given a tree $t:\{0,1\}^{*} \rightarrow \Sigma, \llbracket \beta \rrbracket_{v a l}^{t} \subseteq\{0,1\}^{*}$ denotes a set of nodes.

$$
\begin{array}{ll}
\llbracket Z \rrbracket_{\text {val }}^{t} & =\text { val }(Z) \\
\llbracket \rrbracket_{a}^{t} \rrbracket_{\text {val }}^{t} & =t^{-1}(a) \\
\llbracket \neg \beta \rrbracket_{\text {val }}^{t} & =\{0,1\}^{*} \backslash \llbracket \beta \rrbracket_{\text {val }}^{t} \\
\llbracket \beta \wedge \beta^{\prime} \rrbracket_{\text {val }}^{t} & =\llbracket \beta \rrbracket_{\text {val }}^{t} \cap \llbracket \beta^{\prime} \rrbracket_{\text {val }}^{t} \\
\llbracket\langle 0\rangle \beta \rrbracket_{\text {val }}^{t} & =\left\{w \in\{0,1\}^{*} \mid w 0 \in \llbracket \beta \rrbracket_{\text {val }}^{t}\right\} \\
\llbracket\langle 1\rangle \beta \rrbracket_{\text {val }}^{t} & =\left\{w \in\{0,1\}^{*} \mid w 1 \in \llbracket \beta \rrbracket_{\text {val }}^{t}\right\} \\
\llbracket \mu Z . \beta \rrbracket_{\text {val }}^{t} & =\bigcap\left\{N \in \mathcal{P}\left(\{0,1\}^{*}\right) \mid \llbracket \beta \rrbracket_{\text {val }[N / Z]}^{t} \subseteq N\right\}
\end{array}
$$

The meaning of $\mu Z . \beta$

- Recall

$$
\llbracket \mu Z . \beta \rrbracket_{\text {val }}^{t}=\bigcap\left\{N \in \mathcal{P}\left(\{0,1\}^{*}\right) \mid \llbracket \beta \rrbracket_{\text {val }[N / Z]}^{t} \subseteq N\right\}
$$

- $\mu Z . \beta$ denotes the least fixed-point of

$$
\begin{aligned}
& f: 2^{\{0,1\}^{*}} \rightarrow 2^{\{0,1\}^{*}} \\
& f(N)=\llbracket \beta \rrbracket_{\text {val }[N / Z]}^{t}
\end{aligned}
$$

where f is monotonic, since β is well-formed.
By [Tar55] (for the lattice $\left.\left(2^{\{0,1\}^{*}}, \emptyset,\{0,1\}^{*}, \subseteq\right)\right), f$ has a least fixed-point (and a greatest fixed-point) and this is precisely the value of $\llbracket \mu Z . \beta \rrbracket^{t}$.

- Let $\nu Z . \beta \stackrel{\text { def }}{=} \neg \mu Z . \neg \beta[\neg Z / Z]$. It is a greatest fixed-point.
- Notice that if β is sentence, then $\llbracket \mu Z . \beta \rrbracket_{\text {val }}^{t}=\llbracket \mu Z . \beta \rrbracket_{\text {val' }}^{t}$, for any val, val'; we write it $\llbracket \mu Z . \beta \rrbracket^{t}$.

Examples of formulas

We assume we have true and false in the syntax, with \llbracket true $\rrbracket_{\text {val }}^{t}=\{0,1\}^{*}$ and \llbracket false $\rrbracket_{\text {val }}^{t}=\emptyset$.

- $\mu Z . Z \equiv \mathrm{false}$
- $\nu Z . Z \equiv$ true
- $\mu Z . P \equiv \nu Z . P \equiv P$

Examples of formulas: about CTL

- What is " $\mu Z . P_{a} \vee\langle \rangle Z$ " ?
- It is equivalent to $\mathbf{E F}$ a, whereas $\nu Z . P_{a} \vee\langle \rangle Z \equiv$ true

$$
\begin{aligned}
\mu Z . P_{a} \vee\langle \rangle Z & \equiv P_{a} \vee\langle \rangle\left(\mu Z . P_{a} \vee\langle \rangle Z\right) \\
& \equiv P_{a} \vee\langle \rangle\left(P_{a} \vee\langle \rangle\left(\mu Z . P_{a} \vee\langle \rangle Z\right)\right) \\
& \equiv P_{a} \vee\langle \rangle\left(P_{a} \vee\langle \rangle\left(P_{a} \vee\langle \rangle\left(\mu Z . P_{a} \vee\langle \rangle Z\right)\right)\right) \\
& \equiv \ldots
\end{aligned}
$$

A node $w \in \llbracket \mu Z . P_{a} \vee\langle \rangle Z \rrbracket^{t}$ if either it is in $\llbracket P_{a} \rrbracket^{t}$ or it has a child who is either in $\llbracket P_{a} \rrbracket^{t}$ or who has a child who is in $\llbracket P_{a} \rrbracket^{t}$ or who has a child who ... The least set of nodes with this property is the set of nodes having a path eventually hitting a descendant node labeled by
a. Hence the formula EF a.

- $\mathbf{A} a \mathbf{U} b \equiv \mu Z . P_{b} \vee P_{a} \wedge[] Z$, since

$$
\mu Z . P_{b} \vee P_{a} \wedge[] Z \equiv P_{b} \vee P_{a} \wedge[]\left(P_{b} \vee P_{a} \wedge[]\left(P_{b} \vee P_{a} \wedge[](\ldots)\right)\right)
$$

whereas $\nu Z . P_{b} \vee P_{a} \wedge[] Z \equiv \mathbf{A} a \mathbf{W} b$, the weak until.

- AG $a \equiv \nu Y . P_{a} \wedge[] Y$, since

$$
\nu Y . P_{a} \wedge[] Y \equiv P_{a} \wedge[]\left(P_{a} \wedge[]\left(P_{a} \wedge[](\ldots)\right)\right)
$$

whereas $\mu Z . P_{a} \wedge[] Y \equiv$ false

- AGEF $a \equiv \nu Y .\left(\mu Z . P_{a} \vee\langle \rangle Z\right) \wedge[] Y$
- EGF $b \equiv \nu Y . \mu Z .\langle \rangle(b \wedge Y \vee Z)$
- Intuitively, μ (resp. ν) refers to finite (resp. infinite) prefixes of computations.
- $\nu Z . P_{a} \wedge[][] Z$ is not expressible in CTL* [MP71, Wol83].

Positive normal form

We push negation innermost in the formulas
\Rightarrow formulas in positive normal form

- Notice that $\neg\langle d\rangle \beta=\langle d\rangle \neg \beta$, for $d \in\{0,1\}$.

EXERCISE What if we do not assume states always have successors? (that is branches in the tree might be finite)

Alternation Depth (± 1 in the literature)

Let $\beta \in L_{\mu}$ be in positive normal form.
We define $\operatorname{ad}(\beta)$, the alternation depth of β inductively by:

- $\operatorname{ad}\left(P_{a}\right)=\operatorname{ad}\left(\neg P_{a}\right)=\operatorname{ad}(Z)=0$
- $\operatorname{ad}\left(\beta \wedge \beta^{\prime}\right)=\operatorname{ad}\left(\beta \vee \beta^{\prime}\right)=\max \left\{\operatorname{ad}(\beta), \operatorname{ad}\left(\beta^{\prime}\right)\right\}$
- $\operatorname{ad}(\langle d\rangle \beta)=\operatorname{ad}(\beta)$, for $d \in\{0,1\}$
- $\operatorname{ad}(\mu Z . \beta)=\max \left(\{1, \operatorname{ad}(\beta)\} \cup\left\{\operatorname{ad}\left(\nu Z^{\prime} . \beta^{\prime}\right)+1 \mid \nu Z^{\prime} . \beta^{\prime} \leq \beta, Z \in\right.\right.$ free($\left.\left.\nu Z^{\prime} . \beta^{\prime}\right)\right\}$)
- $\operatorname{ad}(\nu Z . \beta)=\max \left(\{1, \operatorname{ad}(\beta)\} \cup\left\{\operatorname{ad}\left(\mu Z^{\prime} . \beta^{\prime}\right)+1 \mid \mu Z^{\prime} . \beta^{\prime} \leq \beta, Z \in\right.\right.$ free($\left.\left.\mu Z^{\prime} . \beta^{\prime}\right)\right\}$)

Example: $\operatorname{ad}\left(\nu Y .\left(\mu Z . P_{a} \vee\langle \rangle Z \wedge[] Y\right)\right)=2$

Some important results

Write $L_{\mu}^{k}=\left\{\beta \in L_{\mu} \mid \operatorname{ad}(\beta) \leq k\right\}$.

- CTL $\subseteq L_{\mu}^{1}$, and this is strict (recall $\nu Z . P_{a} \wedge[][] Z$ is not expressible in CTL*)
- $\operatorname{ad}\left(\nu Y . \mu Z .\left(\langle \rangle Y \wedge P_{a} \vee Z\right)\right)=2$, then $\mathbf{E} \mathbf{G F} a$ is in L_{μ}^{2}.

Theorem
[Arn99, Bra96, Len96] The alternation hierarchy $L_{\mu}^{0}, L_{\mu}^{1}, L_{\mu}^{2} \ldots$ is strict.

Theorem

[BGL07] The variable hierarchy of the μ-calculus is strict.

Model-checking and Satisfiability

- Write $t \models \beta$ whenever $\epsilon \in \llbracket \beta \rrbracket_{\text {val }}^{t}$.
- Let $L(\beta) \stackrel{\text { def }}{=}\{t \in \operatorname{Trees}(\Sigma) \mid t \models \beta\}$
- The Model-checking Problem (Program Verification):

Given regular tree t and a sentence $\beta \in L_{\mu}$, is it the case that $t \models \beta$?

- The Satisfiability Problem (Program Synthesis):

Does there exist a tree t such that $t \models \beta$?
Does there exist a regular tree? (The finite model property)

Definition (informal)

A tree is regular if it is obtained by unraveling a (finite) Kripke structure.

What next?

- Tree Automata to recognize certain trees:

$$
\beta \in L_{\mu} \rightsquigarrow \mathcal{A}_{\beta} \text { such that } L\left(\mathcal{A}_{\beta}\right)=\{t \in \operatorname{Trees}(\Sigma) \mid t \models \beta\}
$$

The Model-checking Problem \rightsquigarrow The Membership Problem
The Satisfiability Problem \rightsquigarrow The Emptiness Problem

- Games (two-player zero-sum) provide very powerful tools.

Automata on Infinite Objects

Automata on Infinite Objects

Automata with inputs like infinite words and infinite trees (and graphs).

- Automata on Infinite Trees [Rab69], [GH82, Mul84, EJ91], [GTW02, Chap. 8 and 9]
- Acceptance conditions: Büchi, Muller, Rabin and Streett, Parity on every branch of the run of the automaton on its input.
- Runs are trees, and accepting runs fulfill the acceptance condition.
- We consider parity acceptance condition.
- Also ω-automata are automata on infinite words [Büc62, McN66], [Tho90], [GTW02, Chap. 1]
- Acceptance conditions: Büchi, Muller, Rabin and Streett, Parity
- Runs are paths, accepting runs fulfill the accepting condition.
- All coincide with ω-regular languages $\left(L=\bigcup_{i} K_{i} R_{i}^{\omega}\right)$ - deterministic Büchi are weaker.
- Connection with Logic LTL: LTL corresponds to FOL as well as star-free ω-regular languages.

Non-deterministic Parity Tree Automata

- A (\sum-labeled full binary) tree t is input of an automaton.
- In a current node in the tree, the automaton has to decide which state to assume in each of the two child nodes.

Definition

A non-deterministic parity tree (NDPT) automaton is a structure
$\mathcal{A}=\left(Q, \Sigma, q^{0}, \delta, c\right)$ where
$Q\left(\ni q^{0}\right)$ is a finite set of states (q^{0} the initial state)
$\delta \subseteq Q \times \Sigma \times Q \times Q$ is the transition relation
$c: Q \rightarrow\{0, \ldots, k\}, k \in N$ is the coloring function which assigns the index values (colors) to each states of \mathcal{A}

Runs

Definition

A run of $\mathcal{A}=\left(Q, \Sigma, q^{0}, \delta, c\right)$ on an input tree $t \in \operatorname{Trees}(\Sigma)$ is a tree $\rho \in \operatorname{Trees}(Q)$ satisfying

- $\rho(\epsilon)=q^{0}$, and
- for every node $w \in\{0,1\}^{*}$ of t (and its sons $w 0$ and $w 1$), we have

$$
(\rho(w 0), \rho(w 1)) \in \delta(\rho(w), t(w))
$$

Example

Consider the automaton with states q_{a} (initial) and T, and the following transitions:

with $c\left(q_{a}\right)=1$ and $c(T)=0$.

The parity acceptance condition

- Given a run ρ, for a branch γ in ρ write $\ln f_{c}(\gamma) \stackrel{\text { def }}{=}\{j \in\{0, \ldots, k\} \mid c(\gamma(i))=j$ for infinitely many $i\}$
- A run ρ is accepting (successful) iff for every branch $\gamma \in\{0,1\}^{\omega}$ of the tree ρ the parity acceptance condition is satisfied:

$$
\min \ln f_{c}(\gamma) \text { is even }
$$

Example 1

- Let L_{0} be the set of trees the branches of which all contain an a. This may be expressed in L_{μ} as $\mu Z . P_{a} \vee[] Z$ in L_{μ}.
- L_{0} may be characterized by the following tree automaton

$$
\left.\begin{array}{rl}
\delta\left(q_{a}, a\right) & =\{(\top, \top)\} \quad \delta\left(q_{a}, b\right)
\end{array}=\left\{\left(q_{a}, q_{a}\right)\right\},\right\}
$$

with q_{a} initial, $c\left(q_{a}\right)=1$, and $c(T)=0$.

Example 2

Tree automata are nondeterministic, and cannot be determinized in general.

- Let $L_{a}^{\infty} \subseteq \operatorname{Trees}(\{a, b\})$ be the set of trees having a branch with infinitely many a 's.
- Consider the automaton with states q_{a}, q_{b}, \top and transitions (* stands for either a or b).

$$
\begin{aligned}
\delta\left(q_{*}, a\right) & =\left\{\left(q_{a}, \top\right),\left(\top, q_{a}\right)\right\} \\
\delta\left(q_{*}, b\right) & =\left\{\left(q_{b}, \top\right),\left(\top, q_{b}\right)\right\} \\
\delta(\top, *) & =\{(\top, \top)\}
\end{aligned}
$$

and coloring $c\left(q_{b}\right)=1$ and $c\left(q_{a}\right)=c(T)=0$
(only 0 and 1 colors, this a Büchi condition)

Example 2 (Cont.)

$$
\begin{aligned}
\delta\left(q_{*}, a\right) & =\left\{\left(q_{a}, \top\right),\left(\top, q_{a}\right)\right\} \\
\delta\left(q_{*}, b\right) & =\left\{\left(q_{b}, \top\right),\left(\top, q_{b}\right)\right\} \\
\delta(\top, *) & =\{(\top, \top)\} \\
\text { with } c\left(q_{b}\right) & =1 \text { and } c\left(q_{a}\right)=c(\top)=0
\end{aligned}
$$

- From state T, \mathcal{A} accepts any tree.
- Any run from q_{a} consists in a tree with of a single branch labeled with states q_{a}, q_{b}, whereas the rest of the run tree is labeled with T. There are infinitely many states q_{a} on this branch iff there are infinitely many nodes labeled by a.

Acceptance

- A tree t is accepted by \mathcal{A} iff there exists an accepting run of \mathcal{A} on t.
- The tree language recognized by \mathcal{A} is

$$
L(\mathcal{A}) \stackrel{\text { def }}{=}\{t \mid t \text { is accepted by } \mathcal{A}\}
$$

Other Acceptance Conditions

- Büchi is specified by a set $F \subseteq Q$

$$
A c c=\{\gamma \mid \operatorname{lnf}(\gamma) \cap F \neq \emptyset\}
$$

- Muller is specified by a set $\mathcal{F} \subseteq \mathcal{P}(Q)$,

$$
A c c=\{\gamma \mid \operatorname{Inf}(\gamma) \in \mathcal{F}\}
$$

- Rabin is specified by a set $\left\{\left(R_{1}, G_{1}\right), \ldots,\left(R_{k}, G_{k}\right)\right\}$ where $R_{i}, G_{j} \subseteq Q$,

$$
A c c=\left\{\gamma \mid \forall i, \operatorname{Inf}(\gamma) \cap R_{i}=\emptyset \text { and } \operatorname{Inf}(\gamma) \cap G_{i} \neq \emptyset\right\}
$$

- Streett is specified by a set $\left\{\left(R_{1}, G_{1}\right), \ldots,\left(R_{k}, G_{k}\right)\right\}$ where $R_{i}, G_{j} \subseteq Q$,

$$
A c c=\left\{\gamma \mid \forall i, \operatorname{lnf}(\gamma) \cap R_{i}=\emptyset \text { or } \operatorname{Inf}(\gamma) \cap G_{i} \neq \emptyset\right\}
$$

Other Acceptance Conditions

- For the relationship between these conditions see [GTW02].
- Büchi is specified by a set $F \subseteq Q$ and this acceptabce condition for runs is:

$$
A c c=\{\gamma \mid \operatorname{lnf}(\gamma) \cap F \neq \emptyset\}
$$

Büchi tree automata are less expressive than the other acceptance conditions (which are equivalent) [Rab70]: for example, the complement of L_{a}^{∞}, that is finitely many a's on each branch, cannot be characterized by any Büchi tree automaton.

Regular Tree Languages and Properties

- A tree language $L \subseteq \operatorname{Trees}(\Sigma)$ is regular iff there exists a parity tree automaton which recognizes L.
- Tree automata are closed under sum, projection, and complementation.
- Tree automata cannot be determinized: $L_{a}^{\exists} \subseteq \operatorname{Trees}(\{a, b\})$, the language of trees having one node labeled by a, is not recognizable by a deterministic tree automata (with any of the considered acceptance conditions).
- The proof for complementation uses the determinization result for word automata. Difficult proof [GTW02, Chap. 8], [Rab70]
- We will solve the Membership Problem and the Emptiness Problem for (nondeterministic) automata by using Parity Games.

(Parity) Games

(Parity) Games

- Two-person games on directed graphs.
- How are they played?
- What is a strategy? What does it mean to say that a player wins the game?
- Determinacy, forgetful strategies, memoryless strategies

Arena

An arena (or a game graph) is

- $G=\left(V_{0}, V_{1}, E\right)$
- $V_{0}=$ Player 0 positions, and $V_{1}=$ Player 1 positions (partition of V)
- $E \subseteq V \times V$ is the edged-relation
- write $\sigma \in\{0,1\}$ to designate a player, and $\bar{\sigma}=1-\sigma$

color 0 and the rest is colored 1

Plays

- Formally, a play in the arena G is either
- an infinite path $\pi=v_{0} v_{1} v_{2} \ldots \in V^{\omega}$ with $v_{i+1} \in v_{i} E$ for all $i \in \omega$, or
- a finite path $\pi=v_{0} v_{1} v_{2} \ldots v_{I} \in V^{+}$with $v_{i+1} \in v_{i} E$ for all $i<I$, but $v_{l} E=\emptyset$.

Games and Winning sets

- Let be G an arena and $W i n \subseteq V^{\omega}$ be the winning condition
- Player 0 is declared the winner of a play π in the game \mathcal{G} if
- π is finite and $\operatorname{last}(\pi) \in V_{1}$ and $\operatorname{last}(\pi) E=\emptyset$, or
- π is infinite and $\pi \in$ Win.

Parity Winning Conditions

Informally, an infinite play is winning if the minimal color that occurs infinitely often even.

Formally

- We color vertices of the arena by $\chi: V \rightarrow C$ where C is a finite set of so-called colors; it extends to plays $\chi(\pi)=\chi\left(v_{0}\right) \chi\left(v_{1}\right) \chi\left(v_{2}\right) \ldots$.
- C is a finite set of integers called priorities
- Let $\operatorname{lnf} f_{\chi}(\pi)$ be the set of colors that occurs infinitely often in $\chi(\pi)$.

Win is the set of infinite paths π such that $\min \left(\ln f_{C}(\pi)\right)$ is even.

Example of a parity game

color 0 and the rest is colored 1

Strategies and winning region

- A strategy for Player σ is a function $f_{\sigma}: V^{*} V_{\sigma} \rightarrow V$
- A prefix play $\pi=v_{0} v_{1} v_{2} \ldots v_{l}$ is conform with f_{σ} if for every i with $0 \leq i<I$ and $v_{i} \in V_{\sigma}$ the function f_{σ} is defined and we have $v_{i+1}=f_{\sigma}\left(v_{0} \ldots v_{i}\right)$.
- A play is conform with f_{σ} if each of its prefix is conform with f_{σ}.
- The winning region for Player σ is the set $W_{\sigma}(\mathcal{G}) \subseteq V$ of all vertices such that Player σ wins (\mathcal{G}, v) (to be defined rigorously)

Example of Winning Regions

W_{1}
color 0 and the rest is colored 1

Determinacy of Parity Games

- A game $\mathcal{G}=((V, E)$, Win $)$ is determined when the sets $W_{\sigma}(\mathcal{G})$ and $W_{\bar{\sigma}}(\mathcal{G})$ form a partition of V.

Theorem

Every parity game is determined.

- A strategy f_{σ} is a positional (or memoryless) strategy whenever

$$
f_{\sigma}(\pi v)=f_{\sigma}\left(\pi^{\prime} v\right), \forall v \in V_{\sigma}
$$

Theorem
[EJ91, Mos91] In every parity game, both players win memoryless.

See [GTW02, Chaps. 6 and 7]

Complexity Results

```
Theorem
WINS =
{(\mathcal{G},v)|\mathcal{G}\mathrm{ a finite parity game and v a winning position of Player 0}}
is in NP\cap co-NP
```

(1) Guess a memoryless strategy f of Player 0
(2) Check whether f is memoryless winning strategy
[BJW02] proposed a reduction from parity games to safety games, that leads to an algorithm in $O\left(n(n / k)^{\lceil k / 2\rceil}\right)(k+1$ colors $)$.

EXERCISE How would you solve a safety game?

Back to Decision Problems for ND Tree Automata

The Membership Problem: $\mathcal{A} \rightsquigarrow \mathcal{G}_{\mathcal{A}, t}$
(1) Given a tree t and an NDPT automaton \mathcal{A}, we build a parity game $\left(\mathcal{G}_{\mathcal{A}, t}, v_{l}\right)$ s.t. v_{l} is in $W_{0}\left(\mathcal{G}_{\mathcal{A}, t}\right)$ iff $t \in L(\mathcal{A})$.

Moreover, if t is regular (i.e. represented by a finite $\mathrm{KS}(\mathcal{S}, s)$), we can build a finite game.

The Emptiness Problem: $\mathcal{A} \rightsquigarrow \mathcal{A}^{\prime} \rightsquigarrow \mathcal{G}_{\mathcal{A}^{\prime}}$
(1) For each parity automaton \mathcal{A}, we build an Input Free automaton \mathcal{A}^{\prime} such that $L(\mathcal{A}) \neq \emptyset$ iff \mathcal{A}^{\prime} admits a successful run.
(2) From \mathcal{A}^{\prime} we build a parity game $\mathcal{G}_{\mathcal{A}^{\prime}}$ such that (winning) strategies of Player 0 and (successful) runs of \mathcal{A}^{\prime} correspond.

Both problem reduce to solving parity games!

The Membership Problem: The Game Graph $\mathcal{G}_{\mathcal{A}, t}$

0 -positions are of the form $(w, t(w), q)$.
Moves from ($w, t(w)$), with
$\delta(q, t(w))=\left\{\left(q_{1}^{\prime}, q^{\prime \prime}{ }_{1}\right),\left(q_{2}^{\prime}, q^{\prime \prime}{ }_{2}\right), \ldots\left(q_{m}^{\prime}, q_{m}\right)\right\}$ are:

Player 0 chooses the transition $\left(q, t(w), q^{\prime}, q^{\prime \prime}\right)$ from q for input $t(w)$

The Game Graph $\mathcal{G}_{\mathcal{A}, t}$

1-positions are of the form ($\left.w, t(w),\left(q, t(w), q^{\prime}, q^{\prime \prime}\right)\right)$. 2 possible moves from ($\left.w, t(w),\left(q, t(w), q^{\prime}, q^{\prime \prime}\right)\right)$:

Player 1 chooses the branch in the run (left q^{\prime}, or right $q^{\prime \prime}$)

The Game Graph $\mathcal{G}_{\mathcal{A}, t}$

$\mathcal{A}=\left(Q, \Sigma, q^{0}, \delta, c\right)$

- $V_{0}=$ set of triples $(w, t(w), q) \in\{0,1\}^{*} \times \Sigma \times Q$
- $V_{1}=$ set of triples $(w, t(w), \tau) \in\{0,1\}^{*} \times \Sigma \times \delta$
- Moves ...
- Initial position in $\left(\epsilon, t(\epsilon), q^{0}\right) \in V_{0}$
- Priorities:

$$
\begin{aligned}
& \chi((w, t(w), q))=c(q) \\
& \chi\left(\left(w, t(w),\left(q, t(w), q^{\prime}, q^{\prime \prime}\right)\right)\right)=c(q)
\end{aligned}
$$

The Game Graph $\mathcal{G}_{\mathcal{A}, t}$

- $V_{0}:(w, t(w)$, state $q)$
- $V_{1}:\left(w, t(w)\right.$, transition $\left.\left(q, t(w), q^{\prime}, q^{\prime \prime}\right)\right)$
- Moves from V_{0} : from $(w, t(w), q)$, Player 0 can move to $\left(w, t(w),\left(q, t(w), q^{\prime}, q^{\prime \prime}\right)\right)$, for every $\left(q, t(w), q^{\prime}, q^{\prime \prime}\right) \in \delta$
- Moves from V_{0} : from $\left(w, t(w),\left(q, t(w), q^{\prime}, q^{\prime \prime}\right)\right)$, Player 1 can moves to $\left(w 0, t(w 0), q^{\prime}\right)$ or to $\left(w 1, t(w 1), q^{\prime \prime}\right)$.

The Finite Game with a Regular Tree

With the automaton:

$$
\begin{aligned}
& \delta\left(q_{*}, a\right)=\left\{\left(q_{a}, T\right),\left(\top, q_{a}\right)\right\} \\
& \delta\left(q_{*}, b\right)=\left\{\left(q_{b}, \top\right),\left(\top, q_{b}\right)\right\} \\
& \delta(\top, *)=\{(\top, \top)\} \\
& c\left(q_{a}\right)=c(\top)=0 \\
& c\left(q_{b}\right)=1
\end{aligned}
$$

Example of $\mathcal{G}_{\mathcal{A}, t}$

The Emptiness Problem of NDTA

We need the notion of input-free automata.

- An input-free (IF) automaton is $\mathcal{A}^{\prime}=\left(Q, \delta, q_{l}, A c c\right)$ where $\delta \subseteq Q \times Q \times Q$.

Lemma

For each parity automaton \mathcal{A} there exists an IF automaton \mathcal{A}^{\prime} such that $L(\mathcal{A}) \neq \emptyset$ iff \mathcal{A}^{\prime} admits a successful run.

- $\mathcal{A}=\left(Q, \Sigma, q^{0}, \delta, c\right)$ and define $\mathcal{A}^{\prime}=\left(Q \times \Sigma,\left\{q_{l}\right\} \times \Sigma, \delta^{\prime}, c^{\prime}\right)$. \mathcal{A}^{\prime} will guess non-deterministically the second component of its states, i.e. the labeling of a model. Formally,
- for each $\left(q, a, q^{\prime}, q^{\prime \prime}\right) \in \delta$, we generate $\left((q, a),\left(q^{\prime}, x\right),\left(q^{\prime \prime}, y\right)\right) \in \delta^{\prime}$, if $\left(q^{\prime}, x, p, p^{\prime}\right),\left(q^{\prime \prime}, y, r, r^{\prime}\right) \in \delta$ for some $p, p^{\prime}, q, q^{\prime} \in Q$
- $c^{\prime}(q, a)=c(q)$

Example IF Automaton

$$
\begin{aligned}
& \mathcal{A} \quad \rightsquigarrow \mathcal{B} \\
& \left(q_{a}, a, q_{a}, \top\right),\left(q_{a}, a, \top, q_{a}\right) \rightsquigarrow\left(\left(q_{a}, a\right),\left(q_{a}, a\right),(\top, a)\right),\left(\left(q_{a}, a\right),(\top, a),\left(q_{a}, a\right)\right) \\
& \left(\left(q_{a}, a\right),\left(q_{a}, b\right),(\top, a)\right),\left(\left(q_{a}, a\right),(\top, b),\left(q_{a}, a\right)\right) \\
& \left(\left(q_{a}, a\right),\left(q_{a}, a\right),(\top, b)\right),\left(\left(q_{a}, a\right),(T, a),\left(q_{a}, b\right)\right) \\
& \left(\left(q_{a}, a\right),\left(q_{a}, b\right),(\top, b)\right),\left(\left(q_{a}, a\right),(\top, b),\left(q_{a}, b\right)\right) \\
& \left(q_{a}, b, q_{b}, \top\right),\left(q_{a}, b, \top, q_{b}\right) \rightsquigarrow\left(\left(q_{a}, b\right),\left(q_{b}, a\right),(\top, a)\right),\left(\left(q_{a}, a\right),(\top, a),\left(q_{b}, a\right)\right) \\
& \left(\left(q_{a}, b\right),\left(q_{b}, b\right),(\top, a)\right),\left(\left(q_{a}, a\right),(T, b),\left(q_{b}, a\right)\right) \\
& \left(\left(q_{a}, b\right),\left(q_{b}, a\right),(\top, b)\right),\left(\left(q_{a}, a\right),(T, a),\left(q_{b}, b\right)\right) \\
& \left(\left(q_{a}, b\right),\left(q_{b}, b\right),(\top, b)\right),\left(\left(q_{a}, a\right),(\top, b),\left(q_{b}, b\right)\right) \\
& \left(q_{b}, a, q_{a}, \top\right),\left(q_{b}, a, \top, q_{a}\right) \rightsquigarrow \ldots \quad\left(q_{b}, b, q_{b}, \top\right),\left(q_{b}, b, \top, q_{b}\right) \rightsquigarrow \ldots \\
& (\top, a, \top, \top) \rightsquigarrow((\top, a),(\top, a),(\top, a)) \quad(\top, b, \top, \top) \rightsquigarrow \ldots \\
& \text { ((} \top, a),(T, b),(T, a)) \\
& ((\top, a),(\top, a),(\top, b)) \\
& ((\top, a),(\top, b),(\top, b)) \\
& c^{\prime}\left(\left(q_{a}, *\right)\right)=c\left(q_{a}\right)=0, c^{\prime}((T, *))=c(T)=0, c^{\prime}\left(\left(q_{b}, *\right)\right)=c\left(q_{b}\right)=1
\end{aligned}
$$

From IF Automata to Parity Games

\mathcal{A} an IF automaton \rightsquigarrow a parity game $\mathcal{G}_{\mathcal{A}}$

- Positions $V_{0}=Q$ and $V_{1}=\delta$
- Moves for all $\left(q, q^{\prime}, q^{\prime \prime}\right) \in \delta$
- $\left(q,\left(q, q^{\prime}, q^{\prime \prime}\right)\right) \in E$
- $\left(\left(q, q^{\prime}, q^{\prime \prime}\right), q^{\prime}\right),\left(\left(q, q^{\prime}, q^{\prime \prime}\right), q^{\prime \prime}\right) \in E$
- Priorities $\chi(q)=c(q)=\chi\left(\left(q, q^{\prime}, q^{\prime \prime}\right)\right)$

Lemma

(Winning) Strategies of Player 0 and (successful) runs of \mathcal{A} correspond.
Notice that $\mathcal{G}_{\mathcal{A}}$ has a finite number of positions.

Example of $\mathcal{G}_{\mathcal{A}}$

Decidability of Emptiness for NDPT Automata

Theorem

For parity tree automata it is decidable whether their recognized language is empty or not.
$\mathcal{A} \rightsquigarrow \mathcal{A}^{\prime} \rightsquigarrow \mathcal{G}_{\mathcal{A}^{\prime}}$, and combined previous results.

Finite Model Property

Corollary
 If $L(\mathcal{A}) \neq \emptyset$ then $L(\mathcal{A})$ contains a regular tree.

Use the memoryless winning strategy in $\mathcal{G}_{\mathcal{A}^{\prime}}$.
Formally, take \mathcal{A} and its corresponding IF automatan \mathcal{A}^{\prime}. Assume a successful run of \mathcal{A}^{\prime} and a memoryless strategy f for Player 0 in $\mathcal{G}_{\mathcal{A}^{\prime}}$ from some position $\left(q_{l}, a\right)$.
The subgraph $\mathcal{G}_{\mathcal{A}_{f}^{\prime}}$ induces a deteministic IF automaton $\mathcal{A}^{\prime \prime}$ (without acc): extract the transitions out of $\mathcal{G}_{\mathcal{A}_{f}}$ from positions in $V_{1} . \mathcal{A}^{\prime \prime}$ is a subautomaton of \mathcal{A}^{\prime}.
$\mathcal{A}^{\prime \prime}$ generates a regular tree t in the second component of its states. Now, $t \in L(\mathcal{A})$ because \mathcal{A}^{\prime} behaves like \mathcal{A}.

Complexity Issues

Corollary

The Emptiness Problem for NDPT automata is in NP \cap co-NP.
Notice that the size of $\mathcal{G}_{\mathcal{A}^{\prime}}$ is polynomial in the size of \mathcal{A} (see [GTW02, p. 150, Chap. 8]).

Remark

The universality problem is EXPTIME-complete (already for finite trees).

What we have seen

- Binary trees as a simplified setting to represent system's executions.
- Propositional μ-calculus that subsumes all branching-time temporal logics (LTL, CTL, CTL*, PDL, ...).
- Non-determinsitic tree automata (NDTA) to recognize regular tree languages.
- (Parity) games as abstract mathematical tools to, e.g. check emptiness and membership problems for NDTA.
\Rightarrow The emptiness problem for NDTA is in NP \cap co- $N P$.
\Rightarrow Memoryless strategies deliver regular objects.
In particular, NDTA have the finite model property.

What we have not seen

- A generalization of NDTA as Alternating Tree Automata (ATA) and the Simulation Theorem [MS95] that states an exponential time procedure to convert ATA into NDTA.
\Rightarrow ATA have the finite model property.
\Rightarrow Checking emptiness of ATA is in EXPTIME(in fact, complete). BUT checking membership for ATA is in $N P \cap$ co- $N P$.
- The two-way translation μ-calculus formulas \leftrightarrow ATA. \Rightarrow The μ-calculus has the finite model property.
\Rightarrow Satisfiability of μ-calculus formulas is in EXPTIME.
\Rightarrow Model-checking μ-calculus formulas is in $N P \cap$ co- $N P$.

R A．Arnold．
The mu－calculus alternation－depth hierarchy is strict on binary trees．
Research Report 1215－99，LaBRI，Université Bordeaux I， 1999.
（ Dietmar Berwanger，Erich Grädel，and Giacomo Lenzi．
The variable hierarchy of the μ－calculus is strict．
Theory Comput．Syst．，40（4）：437－466， 2007.
圊 J．Bernet，D．Janin，and I．Walukiewicz．
Permissive strategies：from parity games to safety games．
Theoretical informatics and applications，36：251－275， 2002.
围 J．C．Bradfield．
The modal mu－calculus alternation hierarchy is strict．
In Proc．Concurrency Theory，7th International Conference，
CONCUR＇96，Pisa，Italy，LNCS1119，pages 233－246， 1996.
固 J．R．Büchi．
On a decision method in restricted second order arithmetic．

In Proc. 1960 Int. Congr. Logic, Methodology and Philosophy of Science, London, pages 1-11. Stanford Univ. Press, 1962.
E. E. A. Emerson and J. Y. Halpern. "Sometimes" and "Not Never" revisited: On branching versus linear time.
In Proc. 10th ACM Symp. Principles of Programming Languages, Austin, Texas, pages 127-140, January 1983.
E. A. Emerson and C. S. Jutla.

Tree automata, mu-calculus and determinacy.
In Proceedings 32nd Annual IEEE Symp. on Foundations of Computer Science, FOCS'91, San Jose, Puerto Rico, 1-4 Oct 1991, pages 368-377. IEEE Computer Society Press, Los Alamitos, California, 1991.

圊 E. A. Emerson.
Temporal and modal logic.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, vol. B, chapter 16, pages 995-1072. Elsevier Science Publishers, 1990.

E Y. Gurevich and L. Harrington.
Trees, automata, and games.
In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pages 60-65, San Francisco, California, May 1982.
E. Grädel, W. Thomas, and T. Wilke, editors.

Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.
围 Giacomo Lenzi.
A hierarchy theorem for the μ-calculus.
In F. Meyer auf der Heide and B. Monien, editors, Proceedings 23rd Int. Coll. on Automata, Languages and Programming, ICALP'96, Paderborn, Germany, 8-12 July 1996, volume 1099 of Lecture Notes in Computer Science, pages 87-97. Springer-Verlag, Berlin, 1996.
R. McNaughton.

Testing and generating infinite sequences by a finite automaton. Information and Control, 9:521-530, 1966.
(A. W. Mostowski.
Games with forbidden positions.
Research Report 78, Univ. of Gdansk, 1991.
围 R. McNaughton and S. Papert.
Counter-Free Automata.
MIT Press, Cambridge, MA, 1971.
(David E. Muller and Paul E. Schupp.
Simulating alternating tree automata by nondeterministic automata:
New results and new proofs of the theorems of Rabin, McNaughton and Safra.
Theoretical Computer Science, 141(1-2):69-107, 17 April 1995.
D. Muller.

Alternating automata on infinite objects, determinacy and Rabin's theorem.

In Automata on Infinite Words, Le Mont Doré, LNCS 192, pages 100-107. Springer-Verlag, May 1984.

R M. O. Rabin.
Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc., 141:1-35, 1969.
M. O. Rabin.

Weakly definable relations and special automata.
In Symp. Math. Logic and Foundations of Set Theory, pages 1-23, 1970.

目 A. Tarski.
A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5:285-309, 1955.
圊 W. Thomas.
Automata on infinite objects.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, vol. B, chapter 4, pages 133-191. Elsevier Science Publishers, 1990.
P. Wolper.

Temporal logic can be more expressive. Information and Control, 56:72-99, 1983.

