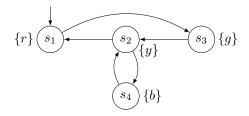
TD5 MVFA: CTL

Exercise 1

Consider the following transition system over $AP = \{b, g, r, y\}$:

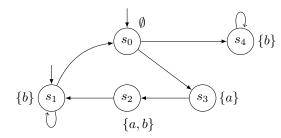


The following atomic propositions are used: r (red), y (yellow), g (green), and b (black). The model is intended to describe a traffic light that is able to blink yellow. You are requested to indicate for each of the following CTL formulas the set of states for which these formulas hold:

1. $\forall \Diamond y$	7. $\exists \Box \neg g$
2. $\forall \Box y$	8. $\forall (b \cup \neg b)$
3. $\forall \Box \forall \Diamond y$	9. $\exists (b \cup \neg b)$
4. $\forall \Diamond g$	10. $\forall (\neg b \cup \exists \Diamond b)$
5. $\exists \Diamond g$	11. $\forall (g \cup \forall (y \cup r))$
6. $\exists \Box g$	12. $\forall (\neg b \cup b)$

Exercise 2

Consider the following transition system over $AP = \{a, b\}$:



You are requested to indicate for each of the following CTL formulas the set of states for which these formulas hold and whether the transition system verify the property:

- $\Phi_1 = \forall (a \cup b) \lor \exists \bigcirc (\forall \Box b)$
- $\Phi_2 = \forall \Box \forall (a \cup b)$

- $\Phi_3 = (a \land b) \to \exists \Box \exists \bigcirc \forall (a \le b)$
- $\Phi_4 = \forall \Box \exists \Diamond \Phi_3$

Exercise 3

Which of the following assertions are correct? Provide a proof or a counterexample.

- 1. If $s \models \exists \Box a$, then $s \models \forall \Box a$.
- 2. If $s \models \forall \Box a$, then $s \models \exists \Box a$.
- 3. If $s \models \forall \Diamond a \lor \forall \Diamond b$, then $s \models \forall \Diamond (a \lor b)$.
- 4. If $s \models \forall \Diamond (a \lor b)$, then $s \models \forall \Diamond a \lor \forall \Diamond b$.
- 5. If $s \models \forall (a \cup b)$, then $s \models \neg(\exists (\neg b \cup (\neg a \land \neg b)) \lor \exists \Box \neg b)$.

Exercise 4

Prove that there exists a formula φ_{CTL} of CTL, two transition systems TS_1 and TS_2 such that:

- $TS_1 \models \varphi_{CTL}$ and $TS_2 \not\models \varphi_{CTL}$.
- for all formulas φ_{LTL} of LTL, $TS_1 \models \varphi_{LTL}$ if and only if $TS_2 \models \varphi_{LTL}$.

Exercise 5

We define a function f such that for all LTL formula ϕ , ψ :

- $f(\neg \phi) = \neg f(\phi)$
- $f(\psi \wedge \phi) = f(\psi) \wedge f(\phi)$
- $f(\psi \lor \phi) = f(\psi) \lor f(\phi)$
- $f(\psi U\phi) = \forall (f(\psi)Uf(\phi))$
- $f(\Diamond \phi) = \forall \Diamond f(\phi)$
- $f(\Box \phi) = \forall \Box f(\phi)$

Prove that there exists a formula ϕ of LTL and a transition system TS such that $TS \models \phi$ and $TS \not\models f(\phi)$.