TD4 MVFA: LTL

Exercise 1

Consider the following sequential circuit:

Let $A P=\left\{x, y, r_{1}, r_{2}\right\}$. Provide LTL formulae for the following properties:

1. "It is impossible that the circuit outputs two successive 1s."
2. "Whenever the input bit is 1 , in at most two steps the output bit will be 1. ."
3. "Whenever the input bit is 1 , the register bits do not change in the next step."
4. "Register r_{1} has infinitely often the value 1 ."

Exercise 2

1. We consider the following construction: given two NBA $\mathcal{A}_{1}=\left(Q_{1}, \Sigma, \delta_{1}, Q_{0_{1}}, F_{1}\right)$ and $\mathcal{A}_{2}=\left(Q_{2}, \Sigma, \delta_{2}, Q_{0_{2}}, F_{2}\right)$, we let $\mathcal{G}_{\mathcal{A}_{1} \sqcap \mathcal{A}_{2}}=\left(Q, \Sigma, \delta, Q_{0}, \mathcal{F}\right)$ be the GNBA where:

- $Q=Q_{1} \times Q_{2}$
- $Q_{0}=Q_{0_{1}} \times Q_{0_{2}}$
- $\mathcal{F}=\left\{F_{1} \times Q_{2}, Q_{1} \times F_{2}\right\}$
- $\delta\left(\left\langle q_{1}, q_{2}\right\rangle, a\right)=\left\{\left\langle p_{1}, p_{2}\right\rangle \mid p_{1} \in \delta\left(q_{1}, a\right), p_{2} \in \delta\left(q_{2}, a\right)\right\}$

Consider the following NBA \mathcal{A}_{a} and \mathcal{A}_{b} on the alphabet $\Sigma_{a b}=\{a, b\}$:

2. Define formally $\mathcal{G}_{\mathcal{A}_{a} \sqcap \mathcal{A}_{b}}$.
3. $\left({ }^{*}\right)$ Prove that for any NBA \mathcal{A}_{1} and $\mathcal{A}_{2}, \mathcal{L}_{\omega}\left(\mathcal{G}_{\mathcal{A}_{1} \sqcap \mathcal{A}_{2}}\right)=\mathcal{L}_{\omega}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}_{\omega}\left(\mathcal{A}_{2}\right)$.
4. We now consider the following construction from GNBA to NBA: let $\mathcal{G}=\left(Q, \Sigma, \delta, Q_{0}, \mathcal{F}\right)$ be an GNBA with $\mathcal{F}=\left\{F_{0}, \ldots, F_{k-1}\right\}$, we define the NBA $\mathcal{A}_{\mathcal{G}}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$ where:

- $Q^{\prime}=Q \times\{1, \ldots, n\}$
- $Q_{0}^{\prime}=Q_{0} \times\{1\}$
- $F^{\prime}=F_{1} \times\{1\}$
- $\delta^{\prime}(\langle q, i\rangle, a)=\left\{\begin{array}{l}\left\{\left\langle q^{\prime}, i\right\rangle: q^{\prime} \in \delta(q, a)\right\} \text { if } q \notin F_{i} \\ \left\{\left\langle q^{\prime}, i+1(\bmod k)\right\rangle: q^{\prime} \in \delta(q, a)\right\} \text { if } q \in F_{i} \\ \left\{\left\langle q^{\prime}, 0\right\rangle: q^{\prime} \in \delta(q, a)\right\} \text { if } q \in F_{i}, i=n\end{array}\right.$

Define formally $\mathcal{A}_{\mathcal{G}_{\mathcal{A}_{a} \sqcap \mathcal{A}_{b}}}$ where $\mathcal{G}_{\mathcal{A}_{a} \sqcap \mathcal{A}_{b}}$ is the GNBA you constructed earlier.
5. (*) Prove that for any GNBA $\mathcal{G}, \mathcal{L}_{\omega}\left(\mathcal{A}_{\mathcal{G}}\right)=\mathcal{L}_{\omega}(\mathcal{G})$.

Exercise 3

Let $\varphi=(a \wedge \bigcirc a) \cup(a \wedge \neg \bigcirc a)$ be an LTL-formula over $A P=\{a\}$.

1. Compute all elementary sets with respect to φ.
2. Construct the GNBA $\mathcal{G}(\varphi)$ such that $\mathcal{L}_{\omega}(\mathcal{G}(\varphi))=\operatorname{Words}(\varphi)$.
3. Give an ω-regular expression E such that $\mathcal{L}_{\omega}(\mathcal{G}(\varphi))=\mathcal{L}_{\omega}(E)$.

Exercise 4 (*)

Which of the following equivalences are correct? Prove the equivalence or provide a counterexample that illustrates that the formula on the left and the formula on the right are not equivalent.

1. $\square \varphi \rightarrow \diamond \psi \equiv \varphi \mathrm{U}(\psi \vee \neg \varphi)$
2. $\diamond \square \varphi \rightarrow \square \diamond \psi \equiv \square(\varphi \mathrm{U}(\psi \vee \neg \varphi))$
3.$(\varphi \vee \neg \psi) \equiv \neg \diamond(\neg \varphi \wedge \psi)$
3. $\diamond(\varphi \wedge \psi) \equiv \diamond \varphi \wedge \diamond \psi$
4.

$\square \varphi \wedge \bigcirc \diamond \varphi \equiv \square \varphi$
6. $\diamond \varphi \wedge \bigcirc \square \varphi \equiv \diamond \varphi$
7. $\square \diamond \varphi \rightarrow \square \diamond \psi \equiv \square(\varphi \rightarrow \diamond \psi)$
8. $\neg\left(\varphi_{1} \mathrm{U} \varphi_{2}\right) \equiv \neg \varphi_{2} \mathrm{~W}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$
9. $\bigcirc \diamond \varphi_{1} \equiv \diamond \bigcirc \varphi_{2}$
10. $\left(\diamond \square \varphi_{1}\right) \wedge\left(\diamond \square \varphi_{2}\right) \equiv \diamond\left(\square \varphi_{1} \wedge \square \varphi_{2}\right)$
11. $\left(\varphi_{1} \mathrm{U} \varphi_{2}\right) \mathrm{U} \varphi_{2} \equiv \varphi_{1} \mathrm{U} \varphi_{2}$

Exercise 5

Let φ and ψ be LTL formulae. Consider the following new operators:

- "At next" $\varphi A X \psi: A_{0} A_{1} \ldots \models \varphi A X \psi \Leftrightarrow$ for all $i \geq 0$ where $A_{i} A_{i+1} \ldots \models \psi$, for which there exists no $0 \leq j<i$ where $A_{j} A_{j+1} \ldots \models \psi, A_{i} A_{i+1} \ldots \models \varphi$ holds.
- "While" $\varphi W H \psi: A_{0} A_{1} \ldots \models \varphi W H \psi \Leftrightarrow$ for all $i \geq 0$ where $A_{j} A_{j+1} \ldots \vDash \psi$ for all $0 \leq j<i$, $A_{k} A_{k+1} \ldots=\varphi$ for all $0 \leq k<i$.
- "Before" $\varphi B \psi: A_{0} A_{1} \ldots \vDash \varphi B \psi \Leftrightarrow$ for all $i \geq 0$ where $A_{i} A_{i+1} \ldots \vDash \psi$, there exists some $0 \leq j<i$ where $A_{j} A_{j+1} \ldots \models \varphi$.

Show that these operators are LTL-definable by providing equivalent LTL formulae. You may use both the until and weak until operator.

