TD1 MVFA: modeling concurrent systems

Exercise 1

Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system.

- TS is called action-deterministic if $|I| \leq 1$ and $|\operatorname{Post}(s, \alpha)| \leq 1$ for all states s and actions α.
- $T S$ is called $A P$-deterministic if $|I| \leq 1$ and $\left|\operatorname{Post}(s) \cap\left\{s^{\prime} \in S \mid L\left(s^{\prime}\right)=A\right\}\right| \leq 1$ for all states $s \in S$ and $A \in 2^{A P}$.

Consider the following transition system $T S_{1}$.

1. Give the formal definition of $T S_{1}$.
2. Specify a finite and an infinite execution of $T S_{1}$.
3. Show whether $T S_{1}$ is an $A P$-deterministic or an action-deterministic transition system.

Exercise 2

We consider the handshaking operator $\|_{H}$ with H a set of actions. The definition is the same than the interleaving operator, except for the transition function for actions $\alpha \in H$ in $T S_{1} \|_{H} T S_{2}$: instead of just taking one of the transitions in $T S_{1}$ or $T S_{2}$ by α, both transition systems must take a transition by α simultaneously. For actions $\alpha \notin H$, the definition of the transition function is the same than in the interleaving operator.

1. Formally define $T S_{1} \|_{H} T S_{2}$ for two transition systems $T S_{1}$ and $T S_{2}$.
2. Show that $\|_{H}$ is associative, that is, for any transition systems $T S_{1}, T S_{2}, T S_{3}$:

$$
\left(T S_{1} \|_{H} T S_{2}\right)\left\|_{H} T S_{3}=T S_{1}\right\|_{H}\left(T S_{2} \|_{H} T S_{3}\right)
$$

Exercise 3

We are given two processes P_{1}, P_{2} with shared integer variable x. The program of process P_{i} is as follows:

```
for \(k_{i}=1, \ldots, N_{i}\) do
    LOAD \((x)\);
    \(\operatorname{INC}(x)\);
    STORE \((x)\);
end
```

Algorithm 1: Process P_{i}
with $N_{i} \geq 1$. That is, P_{i} executes N_{i} times the assignment $x:=x+1$. The assignment $x:=x+1$ is realized using the three actions $\operatorname{LOAD}(x), \operatorname{INC}(x)$ and $\operatorname{STORE}(x)$. Consider the parallel program:
$x:=0$
$P_{1} \| P_{2}$
Algorithm 2: Parallel program P

1. Sketch the program graph for P with $N_{1}=N_{2}=2$. Does P have an execution that halts with the terminal value $x=2$?
2. What is the size of the program graph for $N_{1}=N_{2}=100$? For $N_{1}=N_{2}=10000$? Same question for the associated transition system.

Exercise 4

We consider the following two sequential hardware circuits:

Circuit 1

Circuit 2

For each $i \in\{1,2\}, x_{i}$ is the input of Circuit i, y_{i} the output and r_{i} is a register.
The values of r_{i} and y_{i} depend on the current value of x_{i} and the previous value of r_{i}. For instance, the new value of r_{2} is determined by the function $\delta_{r_{2}}\left(r_{2}, x_{2}\right)=r_{2} \vee x_{2}$, and The value of the output y_{i} depends on the values of x_{i} and r_{i}, for instance the value of y_{2} corresponds to the value of the function $f_{y_{2}}\left(x_{2}, r_{2}\right)=x_{2} \wedge r_{2}$.

1. Write the functions $f_{y_{1}}$ and $\delta_{r_{1}}$.
2. Represent Circuit 1 and Circuit 2 as transition systems.
3. Determine the reachable part of the transition systems of the synchronous product of these transition systems. Assume that the initial values of the registers are $r_{1}=0$ and $r_{2}=1$.
