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Approximation Algorithms

Q.  Suppose I need to solve an NP-hard problem. What should I do?
A.  Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
 Solve problem to optimality.
 Solve problem in poly-time.
 Solve arbitrary instances of the problem.

ρ-approximation algorithm.
 Guaranteed to run in poly-time.
 Guaranteed to solve arbitrary instance of the problem
 Guaranteed to find solution within ratio ρ of true optimum.

Challenge.  Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!



11.1  Load Balancing
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Load Balancing

Input.  m identical machines; n jobs, job j has processing time tj.
 Job j must run contiguously on one machine.
 A machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.  The
load of machine i is Li = Σj ∈ J(i) tj.

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing.  Assign each job to a machine to minimize makespan.
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List-scheduling algorithm.
 Consider n jobs in some fixed order.
 Assign job j to machine whose load is smallest so far.

Implementation.  O(n log m) using a priority queue.

Load Balancing:  List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
   for i = 1 to m {
      Li ← 0
      J(i) ← φ
   }

   for j = 1 to n {
      i = argmink Lk
      J(i) ← J(i) ∪ {j}
      Li ← Li + tj
   }
   return J(1), …, J(m)
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i
update load of machine i
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Load Balancing:  List Scheduling Analysis

Theorem. [Graham, 1966]  Greedy algorithm is a 2-approximation.
 First worst-case analysis of an approximation algorithm.
 Need to compare resulting solution with optimal makespan L*.

Lemma 1.  The optimal makespan L* ≥ maxj tj.
Pf.  Some machine must process the most time-consuming job.  ▪

Lemma 2.  The optimal makespan
Pf.

 The total processing time is  Σj tj .
 One of m machines must do at least a 1/m fraction of total work.  ▪! 

L * " 1

m
t jj# .
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Load Balancing:  List Scheduling Analysis

Theorem.  Greedy algorithm is a 2-approximation.
Pf.  Consider load Li of bottleneck machine i.

 Let j be last job scheduled on machine i.
 When job j assigned to machine i, i had smallest load.  Its load

before assignment is Li - tj    ⇒  Li - tj   ≤  Lk   for all 1 ≤ k ≤ m.

j

0
L = LiLi - tj

machine i

blue jobs scheduled before j
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Load Balancing:  List Scheduling Analysis

Theorem.  Greedy algorithm is a 2-approximation.
Pf.  Consider load Li of bottleneck machine i.

 Let j be last job scheduled on machine i.
 When job j assigned to machine i, i had smallest load.  Its load

before assignment is Li - tj    ⇒  Li - tj   ≤  Lk   for all 1 ≤ k ≤ m.
 Sum inequalities over all k and divide by m:

 Now ▪
! 

Li "  t j # 1

m
Lkk$

= 1

m
tkk$

# L *

  

! 

Li  =  (Li " t j )

# L*

1 2 4 3 4 
+ t j

# L*

{
  #  2L *.

Lemma 2

Lemma 1
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Load Balancing:  List Scheduling Analysis

Q.  Is our analysis tight?
A.  Essentially yes.

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

m = 10
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Load Balancing:  List Scheduling Analysis

Q.  Is our analysis tight?
A.  Essentially yes.

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10
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Load Balancing:  LPT Rule

Longest processing time (LPT).  Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {
   Sort jobs so that t1 ≥ t2 ≥  … ≥ tn

   for i = 1 to m {
      Li ← 0
      J(i) ← φ
   }

   for j = 1 to n {
      i = argmink Lk
      J(i) ← J(i) ∪ {j}
      Li ← Li + tj
   }
   return J(1), …, J(m)
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i

update load of machine i
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Load Balancing:  LPT Rule

Observation.  If at most m jobs, then list-scheduling is optimal.
Pf.  Each job put on its own machine.  ▪

Lemma 3.  If there are more than m jobs, L* ≥ 2 tm+1.
Pf.

 Consider first m+1 jobs t1, …, tm+1.
 Since the ti's are in descending order, each takes at least tm+1 time.
 There are m+1 jobs and m machines, so by pigeonhole principle, at

least one machine gets two jobs.  ▪

Theorem.  LPT rule is a 3/2 approximation algorithm.
Pf.  Same basic approach as for list scheduling.

          ▪
  

! 

Li =  (Li " t j )

# L*

1 2 4 3 4 
+ t j

# 1
2
L*

{
  #  3

2
L *.

Lemma 3
( by observation, can assume number of jobs > m )
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Load Balancing:  LPT Rule

Q.  Is our 3/2 analysis tight?
A.  No.

Theorem.  [Graham, 1969]  LPT rule is a 4/3-approximation.
Pf.  More sophisticated analysis of same algorithm.

Q.  Is Graham's 4/3 analysis tight?
A.  Essentially yes.

Ex:  m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …, 2m-1 and
one job of length m.



11.2  Center Selection
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center

r(C)

Center Selection Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum
distance from a site to nearest center is minimized.

site

k = 4
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Center Selection Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
 dist(x, y) = distance between x and y.
 dist(si, C) = min c ∈ C dist(si, c)  = distance from si to closest center.
 r(C) = maxi dist(si, C) = smallest covering radius.

Goal.  Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
 dist(x, x) = 0 (identity)
 dist(x, y) = dist(y, x) (symmetry)
 dist(x, y) ≤ dist(x, z) + dist(z, y) (triangle inequality)
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center
site

Center Selection Example

Ex:  each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark:  search can be infinite!

r(C)
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Greedy Algorithm:  A False Start

Greedy algorithm.  Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark:  arbitrarily bad!

greedy center 1

k = 2 centers site
center
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Center Selection:  Greedy Algorithm

Greedy algorithm.  Repeatedly choose the next center to be the site
farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf.  By construction of algorithm.

Greedy-Center-Selection(k, n, s1,s2,…,sn) {

   C = φ
   repeat k times {
      Select a site si with maximum dist(si, C)
      Add si to C
   }
   return C
}

site farthest from any center
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Center Selection:  Analysis of Greedy Algorithm

Theorem.  Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).
Pf.  (by contradiction)  Assume r(C*) < ½ r(C).

 For each site ci in C, consider ball of radius ½ r(C) around it.
 Exactly one ci* in each ball; let ci be the site paired with ci*.
 Consider any site s and its closest center ci* in C*.
 dist(s, C)  ≤  dist(s, ci)  ≤  dist(s, ci*) + dist(ci*, ci)  ≤  2r(C*).
 Thus r(C)  ≤  2r(C*).   ▪

C*
sites

½ r(C)

ci

ci*s

≤  r(C*) since ci* is closest center

½ r(C)

½ r(C)

Δ-inequality
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Center Selection

Theorem.  Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).

Theorem.  Greedy algorithm is a 2-approximation for center selection
problem.

Remark.  Greedy algorithm always places centers at sites, but is still
within a factor of 2 of best solution that is allowed to place centers
anywhere.

Question.  Is there hope of a 3/2-approximation? 4/3?

e.g., points in the plane

Theorem.  Unless P = NP, there no ρ-approximation for center-selection
problem for any ρ < 2.



11.4  The Pricing Method:  Vertex Cover
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Weighted Vertex Cover

Weighted vertex cover.  Given a graph G with vertex weights, find a
vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 9
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Pricing Method

Pricing method.  Each edge must be covered by some vertex.
Edge e = (i, j)  pays price pe ≥ 0 to use vertex i and j.

Fairness.  Edges incident to vertex i should pay ≤ wi in total.

Lemma.  For any vertex cover S and any fair prices pe:  ∑e pe  ≤  w(S).

Pf.    ▪

4

9

2

2

i
jie
e wpi !"

= ),(

:x each vertefor 

).(
),(

Swwpp
Si

i
jie
e

SiEe
e =!! """"

#=##

sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S
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Pricing Method

Pricing method.  Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {
   foreach e in E
      pe = 0

   while (∃ edge i-j such that neither i nor j are tight)
      select such an edge e
      increase pe as much as possible until i or j tight
   }

   S ← set of all tight nodes
   return S
}

i
jie
e wp =!

= ),(
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Pricing Method

vertex weight

Figure 11.8

price of edge a-b
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Pricing Method:  Analysis

Theorem.  Pricing method is a 2-approximation.
Pf.

 Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

 Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover:  if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

 Let S* be optimal vertex cover. We show w(S) ≤ 2w(S*).

! 

w(S) = wi
i" S

# =
i" S

# pe
e=(i, j)

# $
i"V

# pe
e=(i, j)

# = 2 pe
e" E

# $ 2w(S*).

all nodes in S are tight S ⊆ V,
prices ≥ 0

fairness lemmaeach edge counted twice



11.6  LP Rounding: Vertex Cover
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Weighted Vertex Cover

Weighted vertex cover.  Given an undirected graph G = (V, E) with
vertex weights wi ≥ 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

3

6

10

7

A

E

H

B

D I

C

F

J

G

6

16

10

7

23

9

10

9

33

total weight = 55

32
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Weighted Vertex Cover:  IP Formulation

Weighted vertex cover.  Given an undirected graph G = (V, E) with
vertex weights wi ≥ 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

Integer programming formulation.
 Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1-1 correspondence with 0/1 assignments:
 S = {i ∈ V : xi = 1}

 Objective function:  maximize Σi wi xi.

 Must take either i or j:  xi + xj  ≥ 1.

! 

x
i
 =  

 0 if vertex i is not in vertex cover

 1 if vertex i is in vertex cover

" 
# 
$ 
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Weighted Vertex Cover:  IP Formulation

Weighted vertex cover.  Integer programming formulation.

Observation.  If x* is optimal solution to (ILP), then S = {i ∈ V : x*i = 1}
is a min weight vertex cover.

  

! 

( ILP) min  wi xi

i  "  V

#

s. t. xi + x j $ 1 (i, j)" E

xi " {0,1} i "V
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Integer Programming

INTEGER-PROGRAMMING.  Given integers aij and bi, find integers xj that
satisfy:

Observation.  Vertex cover formulation proves that integer
programming is NP-hard search problem.

! 

aij x j
j=1

n

" # bi          1$ i $ m

xj # 0           1$ j $ n

x j integral 1$ j $ n

even if all coefficients are 0/1 and
at most two variables per inequality

! 

max c
t
x

s. t. Ax " b         

x integral
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Linear Programming

Linear programming.  Max/min linear objective function subject to
linear inequalities.

 Input:  integers cj, bi, aij .
 Output:  real numbers xj.

Linear.  No x2,  xy,  arccos(x),  x(1-x), etc.

Simplex algorithm.  [Dantzig 1947]  Can solve LP in practice.
Ellipsoid algorithm.  [Khachian 1979]  Can solve LP in poly-time.

! 

(P) max cj x j
j=1

n

"

s. t. aij x j
j=1

n

" # bi 1$ i $ m

xj # 0 1$ j $ n

! 

(P) max c
t
x

s. t. Ax " b

x " 0
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LP Feasible Region

LP geometry in 2D.

x1 + 2x2 = 6
2x1 + x2 = 6

x2 = 0

x1 = 0
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Weighted Vertex Cover:  LP Relaxation

Weighted vertex cover.  Linear programming formulation.

Observation.  Optimal value of (LP) is  ≤  optimal value of (ILP).
Pf.  LP has fewer constraints.

Note.  LP is not equivalent to vertex cover.

Q.  How can solving LP help us find a small vertex cover?
A.  Solve LP and round fractional values.

  

! 

(LP) min  wi xi

i  "  V

#

s. t. xi + x j $ 1 (i, j)" E

xi $ 0 i "V

½½

½
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Weighted Vertex Cover

Theorem.  If x* is optimal solution to (LP), then S = {i ∈ V  : x*i ≥ ½} is a
vertex cover whose weight is at most twice the min possible weight.

Pf.  [S is a vertex cover]
 Consider an edge (i, j) ∈ E.
 Since x*i + x*j  ≥  1, either x*i ≥ ½ or  x*j ≥ ½   ⇒  (i, j) covered.

Pf.  [S has desired cost]
 Let S* be optimal vertex cover. Then

! 

w
i

i " S*

#   $  w
i
x
i

*

i " S

#   $   1

2
w
i

i " S

#

LP is a relaxation x*i  ≥  ½
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Weighted Vertex Cover

Theorem.  2-approximation algorithm for weighted vertex cover.

Theorem.  [Dinur-Safra 2001]  If P ≠ NP, then no ρ-approximation
for ρ < 1.3607, even with unit weights.

Open research problem.   Close the gap.

10 √5  - 21



* 11.7  Load Balancing Reloaded
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Generalized Load Balancing

Input.  Set of m machines M; set of n jobs J.
 Job j must run contiguously on an authorized machine in Mj ⊆ M.
 Job j has processing time tj.
 Each machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.  The
load of machine i is Li = Σj ∈ J(i) tj.

Def. The makespan is the maximum load on any machine = maxi Li.

Generalized load balancing.  Assign each job to an authorized machine
to minimize makespan.
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Generalized Load Balancing:  Integer Linear Program and Relaxation

ILP formulation.  xij = time machine i spends processing job j.

LP relaxation.
! 

(IP) min L

s. t. xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j # {0, t j} for all j # J and i # M j

xi j = 0 for all j # J and i % M j

! 

(LP) min L

s. t. xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j % 0 for all j # J and i # M j

xi j = 0 for all j # J and i & M j
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Generalized Load Balancing:  Lower Bounds

Lemma 1.  Let L be the optimal value to the LP. Then, the optimal
makespan  L* ≥ L.
Pf.  LP has fewer constraints than IP formulation.

Lemma 2.  The optimal makespan L* ≥  maxj tj.
Pf.  Some machine must process the most time-consuming job.  ▪
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Generalized Load Balancing:  Structure of LP Solution

Lemma 3.  Let x be solution to LP.  Let G(x) be the graph with an edge
from machine i to job j if xij > 0.  Then G(x) is acyclic.

Pf.  (deferred)

G(x) acyclic job

machine

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0
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Generalized Load Balancing:  Rounding

Rounded solution.  Find LP solution x where G(x) is a forest.  Root
forest G(x) at some arbitrary machine node r.

 If job j is a leaf node, assign j to its parent machine i.
 If job j is not a leaf node, assign j to one of its children.

Lemma 4.  Rounded solution only assigns jobs to authorized machines.
Pf.  If job j is assigned to machine i, then xij > 0.  LP solution can only
assign positive value to authorized machines.   ▪

job

machine
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Generalized Load Balancing:  Analysis

Lemma 5.  If job j is a leaf node and machine i = parent(j), then xij = tj.
Pf.  Since i is a leaf, xij = 0 for all j ≠ parent(i).   LP constraint
guarantees Σi xij = tj.   ▪

Lemma 6.  At most one non-leaf job is assigned to a machine.
Pf.  The only possible non-leaf job assigned to machine i is parent(i).  ▪

job

machine
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Generalized Load Balancing:  Analysis

Theorem.  Rounded solution is a 2-approximation.
Pf.

 Let J(i) be the jobs assigned to machine i.
 By Lemma 6, the load Li on machine i has two components:

– leaf nodes

– parent(i)

 Thus, the overall load Li ≤ 2L*.   ▪

! 

t j
  j  "  J(i)
j is a leaf

#  = xij
  j  "  J(i)
j is a leaf

#   $ xij
j  "  J

#  $  L  $  L *

Lemma 5 Lemma 1 (LP is a relaxation)

! 

tparent(i)  "  L *

LP

Lemma 2
optimal value of LP
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Flow formulation of LP.

Observation.  Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

Generalized Load Balancing:  Flow Formulation

∞

! 

xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j % 0 for all j # J and i # M j

xi j = 0 for all j # J and i & M j
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Lemma 3.  Let (x, L) be solution to LP.  Let G(x) be the graph with an
edge from machine i to job j if xij > 0.  We can find another solution (x',
L) such that G(x') is acyclic.

Pf.  Let C be a cycle in G(x).
 Augment flow along the cycle C.
 At least one edge from C is removed (and none are added).
 Repeat until G(x') is acyclic.

Generalized Load Balancing:  Structure of Solution

3

4

4

3

2 

3

1

2

6

5

G(x)

3

4

4

3

3 

4

1

6

5

G(x')
augment along C

flow conservation maintained
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Conclusions

Running time.  The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark.  Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists.  Binary search to find L*.

Extensions:  unrelated parallel machines.  [Lenstra-Shmoys-Tardos 1990]
 Job j takes tij time if processed on machine i.
 2-approximation algorithm via LP rounding.
 No 3/2-approximation algorithm unless P = NP.



11.8  Knapsack Problem
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Polynomial Time Approximation Scheme

PTAS.  (1 + ε)-approximation algorithm for any constant ε > 0.
 Load balancing.  [Hochbaum-Shmoys 1987]
 Euclidean TSP.  [Arora 1996]

Consequence.  PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section.  PTAS for knapsack problem via rounding and scaling.
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Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i has value vi  > 0 and weighs wi > 0.
 Knapsack can carry weight up to W.
 Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.
1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
W = 11

we'll assume wi ≤ W 
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Knapsack is NP-Complete

KNAPSACK:  Given a finite set X, nonnegative weights wi, nonnegative
values vi, a weight limit W, and a target value V, is there a subset S ⊆  X
such that:

SUBSET-SUM:  Given a finite set X, nonnegative values ui, and an integer
U, is there a subset S ⊆  X whose elements sum to exactly U?

Claim.  SUBSET-SUM ≤ P KNAPSACK.
Pf.  Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK
instance:

  

! 

w
i

i"S

# $ W

v
i

i"S

# % V

! 

v
i
= w

i
= u

i
  u

i

i"S

# $ U

V =W =U u
i

i"S

# % U
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Knapsack Problem:  Dynamic Programming 1

Def.  OPT(i, w) = max value subset of items  1,..., i with weight limit w.
 Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w
 Case 2:  OPT selects item i.

– new weight limit = w – wi
– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time.  O(n W).
 W = weight limit.
 Not polynomial in input size!

  

! 

OPT(i, w) =

0 if  i = 0

OPT(i "1, w) if  wi > w

max OPT(i "1, w), v
i
+ OPT(i "1, w"w

i
){ } otherwise

# 

$ 
% 

& 
% 
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Knapsack Problem:  Dynamic Programming II

Def.  OPT(i, v) = min weight subset of items 1, …, i that yields value
exactly v.

 Case 1:  OPT does not select item i.
– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2:  OPT selects item i.
– consumes weight wi, new value needed = v – vi
– OPT selects best of 1, …, i-1 that achieves exactly value v

Running time.  O(n V*) = O(n2 vmax).
 V* = optimal value = maximum v such that OPT(n, v) ≤ W.
 Not polynomial in input size!

! 

OPT (i, v) =

0 if  v = 0

" if  i = 0, v > 0

OPT (i #1, v) if  vi > v

min OPT (i #1, v), w
i
+ OPT (i #1, v# v

i
){ } otherwise

$ 

% 

& 
& 

' 

& 
& 

V* ≤ n vmax
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Knapsack:  FPTAS

Intuition for approximation algorithm.
 Round all values up to lie in smaller range.
 Run dynamic programming algorithm on rounded instance.
 Return optimal items in rounded instance.

W = 11

original instance rounded instance

W = 11

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
934,221

Value

17,810,013
21,217,800
27,343,199

1

Weight

5
6

5,956,342 2

7

Item

1

3
4
5

2
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:

– vmax = largest value in original instance
– ε     = precision parameter
– θ     =  scaling factor = ε vmax / n

Observation.  Optimal solution to problems with     or     are equivalent.

Intuition.     close to v so optimal solution using    is nearly optimal;
    small and integral so dynamic programming algorithm is fast.

Running time.  O(n3 / ε).
 Dynamic program II running time is                ,  where

! 

v 
i
=

v
i

"

# 

$ $ 
% 

& & 
 ", ˆ v 

i
=

v
i

"

# 

$ $ 
% 

& & 

  

! 

ˆ v   

! 

v 

  

! 

v   

! 

v 

  

! 

ˆ v 

  

! 

O(n
2

ˆ v max)

! 

ˆ v 
max

 =
v

max

"

# 

$ $ 
% 

& & 
 =  

n

'

# 

$ $ 
% 

& & 
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:

Theorem.  If S is solution found by our algorithm and S* is any other
feasible solution then

Pf.  Let S* be any feasible solution satisfying weight constraint.

! 

v
i

i " S*

# $ v 
i

i " S*

#

$ v 
i

i " S

#

$ (v
i

i " S

# + %)

$ v
i

i" S

# +  n%

$ (1+&) v
i

i" S

#

always round up

solve rounded instance optimally

never round up by more than θ

  

! 

(1+") v
i
 #  v

i

i $ S*

%
i$ S

%

|S| ≤ n

n θ = ε vmax,  vmax ≤ Σi∈S vi

DP alg can take vmax

! 

v 
i
=

v
i

"

# 

$ $ 
% 

& & 
 "



Extra Slides
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Machine 2

Machine 1a d f

b c e g

yes

Load Balancing on 2 Machines

Claim.  Load balancing is hard even if only 2 machines.
Pf.  NUMBER-PARTITIONING ≤ P LOAD-BALANCE.

a d

f

b c

ge

length of job f

Time L0

machine 1

machine 2

NP-complete by Exercise 8.26
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Center Selection:  Hardness of Approximation

Theorem.  Unless P = NP, there is no ρ-approximation algorithm for
metric k-center problem for any ρ < 2.

Pf.  We show how we could use a (2 - ε) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.

 Let G = (V, E), k be an instance of DOMINATING-SET.
 Construct instance G' of k-center with sites V and distances

– d(u, v) = 2 if (u, v) ∈ E
– d(u, v) = 1 if (u, v) ∉ E

 Note that G' satisfies the triangle inequality.
 Claim:  G has dominating set of size k iff there exists k centers C*

with r(C*) = 1.
 Thus, if G has a dominating set of size k, a (2 - ε)-approximation

algorithm on G' must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

see Exercise 8.29


