
1

Chapter 11

Approximation
Algorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

2

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
 Solve problem to optimality.
 Solve problem in poly-time.
 Solve arbitrary instances of the problem.

ρ-approximation algorithm.
 Guaranteed to run in poly-time.
 Guaranteed to solve arbitrary instance of the problem
 Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!

11.1 Load Balancing

4

Load Balancing

Input. m identical machines; n jobs, job j has processing time tj.
 Job j must run contiguously on one machine.
 A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine i is Li = Σj ∈ J(i) tj.

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing. Assign each job to a machine to minimize makespan.

5

List-scheduling algorithm.
 Consider n jobs in some fixed order.
 Assign job j to machine whose load is smallest so far.

Implementation. O(n log m) using a priority queue.

Load Balancing: List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
 for i = 1 to m {
 Li ← 0
 J(i) ← φ
 }

 for j = 1 to n {
 i = argmink Lk
 J(i) ← J(i) ∪ {j}
 Li ← Li + tj
 }
 return J(1), …, J(m)
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i
update load of machine i

6

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
 First worst-case analysis of an approximation algorithm.
 Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* ≥ maxj tj.
Pf. Some machine must process the most time-consuming job. ▪

Lemma 2. The optimal makespan
Pf.

 The total processing time is Σj tj .
 One of m machines must do at least a 1/m fraction of total work. ▪!

L * " 1

m
t jj# .

7

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.

 Let j be last job scheduled on machine i.
 When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj ⇒ Li - tj ≤ Lk for all 1 ≤ k ≤ m.

j

0
L = LiLi - tj

machine i

blue jobs scheduled before j

8

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.

 Let j be last job scheduled on machine i.
 When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj ⇒ Li - tj ≤ Lk for all 1 ≤ k ≤ m.
 Sum inequalities over all k and divide by m:

 Now ▪
!

Li " t j # 1

m
Lkk$

= 1

m
tkk$

L *

!

Li = (Li " t j)

L*

1 2 4 3 4
+ t j

L*

{
 # 2L *.

Lemma 2

Lemma 1

9

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

m = 10

10

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10

11

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {
 Sort jobs so that t1 ≥ t2 ≥ … ≥ tn

 for i = 1 to m {
 Li ← 0
 J(i) ← φ
 }

 for j = 1 to n {
 i = argmink Lk
 J(i) ← J(i) ∪ {j}
 Li ← Li + tj
 }
 return J(1), …, J(m)
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i

update load of machine i

12

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. ▪

Lemma 3. If there are more than m jobs, L* ≥ 2 tm+1.
Pf.

 Consider first m+1 jobs t1, …, tm+1.
 Since the ti's are in descending order, each takes at least tm+1 time.
 There are m+1 jobs and m machines, so by pigeonhole principle, at

least one machine gets two jobs. ▪

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

 ▪

!

Li = (Li " t j)

L*

1 2 4 3 4
+ t j

1
2
L*

{
 # 3

2
L *.

Lemma 3
(by observation, can assume number of jobs > m)

13

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …, 2m-1 and
one job of length m.

11.2 Center Selection

15

center

r(C)

Center Selection Problem

Input. Set of n sites s1, …, sn and integer k > 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

site

k = 4

16

Center Selection Problem

Input. Set of n sites s1, …, sn and integer k > 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
 dist(x, y) = distance between x and y.
 dist(si, C) = min c ∈ C dist(si, c) = distance from si to closest center.
 r(C) = maxi dist(si, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
 dist(x, x) = 0 (identity)
 dist(x, y) = dist(y, x) (symmetry)
 dist(x, y) ≤ dist(x, z) + dist(z, y) (triangle inequality)

17

center
site

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(C)

18

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark: arbitrarily bad!

greedy center 1

k = 2 centers site
center

19

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.

Greedy-Center-Selection(k, n, s1,s2,…,sn) {

 C = φ
 repeat k times {
 Select a site si with maximum dist(si, C)
 Add si to C
 }
 return C
}

site farthest from any center

20

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).
Pf. (by contradiction) Assume r(C*) < ½ r(C).

 For each site ci in C, consider ball of radius ½ r(C) around it.
 Exactly one ci* in each ball; let ci be the site paired with ci*.
 Consider any site s and its closest center ci* in C*.
 dist(s, C) ≤ dist(s, ci) ≤ dist(s, ci*) + dist(ci*, ci) ≤ 2r(C*).
 Thus r(C) ≤ 2r(C*). ▪

C*
sites

½ r(C)

ci

ci*s

≤ r(C*) since ci* is closest center

½ r(C)

½ r(C)

Δ-inequality

21

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers at sites, but is still
within a factor of 2 of best solution that is allowed to place centers
anywhere.

Question. Is there hope of a 3/2-approximation? 4/3?

e.g., points in the plane

Theorem. Unless P = NP, there no ρ-approximation for center-selection
problem for any ρ < 2.

11.4 The Pricing Method: Vertex Cover

23

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 9

24

Pricing Method

Pricing method. Each edge must be covered by some vertex.
Edge e = (i, j) pays price pe ≥ 0 to use vertex i and j.

Fairness. Edges incident to vertex i should pay ≤ wi in total.

Lemma. For any vertex cover S and any fair prices pe: ∑e pe ≤ w(S).

Pf. ▪

4

9

2

2

i
jie
e wpi !"

=),(

:x each vertefor

).(
),(

Swwpp
Si

i
jie
e

SiEe
e =!! """"

#=##

sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S

25

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {
 foreach e in E
 pe = 0

 while (∃ edge i-j such that neither i nor j are tight)
 select such an edge e
 increase pe as much as possible until i or j tight
 }

 S ← set of all tight nodes
 return S
}

i
jie
e wp =!

=),(

26

Pricing Method

vertex weight

Figure 11.8

price of edge a-b

27

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.

 Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

 Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

 Let S* be optimal vertex cover. We show w(S) ≤ 2w(S*).

!

w(S) = wi
i" S

=
i" S

pe
e=(i, j)

$
i"V

pe
e=(i, j)

= 2 pe
e" E

$ 2w(S*).

all nodes in S are tight S ⊆ V,
prices ≥ 0

fairness lemmaeach edge counted twice

11.6 LP Rounding: Vertex Cover

29

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights wi ≥ 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

3

6

10

7

A

E

H

B

D I

C

F

J

G

6

16

10

7

23

9

10

9

33

total weight = 55

32

30

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights wi ≥ 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

Integer programming formulation.
 Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1-1 correspondence with 0/1 assignments:
 S = {i ∈ V : xi = 1}

 Objective function: maximize Σi wi xi.

 Must take either i or j: xi + xj ≥ 1.

!

x
i
 =

 0 if vertex i is not in vertex cover

 1 if vertex i is in vertex cover

"

$

31

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

Observation. If x* is optimal solution to (ILP), then S = {i ∈ V : x*i = 1}
is a min weight vertex cover.

!

(ILP) min wi xi

i " V

#

s. t. xi + x j $ 1 (i, j)" E

xi " {0,1} i "V

32

Integer Programming

INTEGER-PROGRAMMING. Given integers aij and bi, find integers xj that
satisfy:

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

!

aij x j
j=1

n

" # bi 1$ i $ m

xj # 0 1$ j $ n

x j integral 1$ j $ n

even if all coefficients are 0/1 and
at most two variables per inequality

!

max c
t
x

s. t. Ax " b

x integral

33

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.

 Input: integers cj, bi, aij .
 Output: real numbers xj.

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

!

(P) max cj x j
j=1

n

"

s. t. aij x j
j=1

n

" # bi 1$ i $ m

xj # 0 1$ j $ n

!

(P) max c
t
x

s. t. Ax " b

x " 0

34

LP Feasible Region

LP geometry in 2D.

x1 + 2x2 = 6
2x1 + x2 = 6

x2 = 0

x1 = 0

35

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

Observation. Optimal value of (LP) is ≤ optimal value of (ILP).
Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

!

(LP) min wi xi

i " V

#

s. t. xi + x j $ 1 (i, j)" E

xi $ 0 i "V

½½

½

36

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), then S = {i ∈ V : x*i ≥ ½} is a
vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]
 Consider an edge (i, j) ∈ E.
 Since x*i + x*j ≥ 1, either x*i ≥ ½ or x*j ≥ ½ ⇒ (i, j) covered.

Pf. [S has desired cost]
 Let S* be optimal vertex cover. Then

!

w
i

i " S*

$ w
i
x
i

*

i " S

$ 1

2
w
i

i " S

#

LP is a relaxation x*i ≥ ½

37

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P ≠ NP, then no ρ-approximation
for ρ < 1.3607, even with unit weights.

Open research problem. Close the gap.

10 √5 - 21

* 11.7 Load Balancing Reloaded

39

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
 Job j must run contiguously on an authorized machine in Mj ⊆ M.
 Job j has processing time tj.
 Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine i is Li = Σj ∈ J(i) tj.

Def. The makespan is the maximum load on any machine = maxi Li.

Generalized load balancing. Assign each job to an authorized machine
to minimize makespan.

40

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. xij = time machine i spends processing job j.

LP relaxation.
!

(IP) min L

s. t. xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j # {0, t j} for all j # J and i # M j

xi j = 0 for all j # J and i % M j

!

(LP) min L

s. t. xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j % 0 for all j # J and i # M j

xi j = 0 for all j # J and i & M j

41

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* ≥ L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* ≥ maxj tj.
Pf. Some machine must process the most time-consuming job. ▪

42

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge
from machine i to job j if xij > 0. Then G(x) is acyclic.

Pf. (deferred)

G(x) acyclic job

machine

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0

43

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root
forest G(x) at some arbitrary machine node r.

 If job j is a leaf node, assign j to its parent machine i.
 If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then xij > 0. LP solution can only
assign positive value to authorized machines. ▪

job

machine

44

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then xij = tj.
Pf. Since i is a leaf, xij = 0 for all j ≠ parent(i). LP constraint
guarantees Σi xij = tj. ▪

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). ▪

job

machine

45

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.

 Let J(i) be the jobs assigned to machine i.
 By Lemma 6, the load Li on machine i has two components:

– leaf nodes

– parent(i)

 Thus, the overall load Li ≤ 2L*. ▪

!

t j
 j " J(i)
j is a leaf

= xij
 j " J(i)
j is a leaf

$ xij
j " J

$ L $ L *

Lemma 5 Lemma 1 (LP is a relaxation)

!

tparent(i) " L *

LP

Lemma 2
optimal value of LP

46

Flow formulation of LP.

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Flow Formulation

∞

!

xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j % 0 for all j # J and i # M j

xi j = 0 for all j # J and i & M j

47

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an
edge from machine i to job j if xij > 0. We can find another solution (x',
L) such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).
 Augment flow along the cycle C.
 At least one edge from C is removed (and none are added).
 Repeat until G(x') is acyclic.

Generalized Load Balancing: Structure of Solution

3

4

4

3

2

3

1

2

6

5

G(x)

3

4

4

3

3

4

1

6

5

G(x')
augment along C

flow conservation maintained

48

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
 Job j takes tij time if processed on machine i.
 2-approximation algorithm via LP rounding.
 No 3/2-approximation algorithm unless P = NP.

11.8 Knapsack Problem

50

Polynomial Time Approximation Scheme

PTAS. (1 + ε)-approximation algorithm for any constant ε > 0.
 Load balancing. [Hochbaum-Shmoys 1987]
 Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

51

Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i has value vi > 0 and weighs wi > 0.
 Knapsack can carry weight up to W.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.
1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
W = 11

we'll assume wi ≤ W

52

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights wi, nonnegative
values vi, a weight limit W, and a target value V, is there a subset S ⊆ X
such that:

SUBSET-SUM: Given a finite set X, nonnegative values ui, and an integer
U, is there a subset S ⊆ X whose elements sum to exactly U?

Claim. SUBSET-SUM ≤ P KNAPSACK.
Pf. Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK
instance:

!

w
i

i"S

$ W

v
i

i"S

% V

!

v
i
= w

i
= u

i
 u

i

i"S

$ U

V =W =U u
i

i"S

% U

53

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
 Case 1: OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w
 Case 2: OPT selects item i.

– new weight limit = w – wi
– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time. O(n W).
 W = weight limit.
 Not polynomial in input size!

!

OPT(i, w) =

0 if i = 0

OPT(i "1, w) if wi > w

max OPT(i "1, w), v
i
+ OPT(i "1, w"w

i
){ } otherwise

$
%

&
%

54

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, …, i that yields value
exactly v.

 Case 1: OPT does not select item i.
– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2: OPT selects item i.
– consumes weight wi, new value needed = v – vi
– OPT selects best of 1, …, i-1 that achieves exactly value v

Running time. O(n V*) = O(n2 vmax).
 V* = optimal value = maximum v such that OPT(n, v) ≤ W.
 Not polynomial in input size!

!

OPT (i, v) =

0 if v = 0

" if i = 0, v > 0

OPT (i #1, v) if vi > v

min OPT (i #1, v), w
i
+ OPT (i #1, v# v

i
){ } otherwise

$

%

&
&

'

&
&

V* ≤ n vmax

55

Knapsack: FPTAS

Intuition for approximation algorithm.
 Round all values up to lie in smaller range.
 Run dynamic programming algorithm on rounded instance.
 Return optimal items in rounded instance.

W = 11

original instance rounded instance

W = 11

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
934,221

Value

17,810,013
21,217,800
27,343,199

1

Weight

5
6

5,956,342 2

7

Item

1

3
4
5

2

56

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

– vmax = largest value in original instance
– ε = precision parameter
– θ = scaling factor = ε vmax / n

Observation. Optimal solution to problems with or are equivalent.

Intuition. close to v so optimal solution using is nearly optimal;
 small and integral so dynamic programming algorithm is fast.

Running time. O(n3 / ε).
 Dynamic program II running time is , where

!

v
i
=

v
i

"

$ $
%

& &
 ", ˆ v

i
=

v
i

"

$ $
%

& &

!

ˆ v

!

v

!

v

!

v

!

ˆ v

!

O(n
2

ˆ v max)

!

ˆ v
max

 =
v

max

"

$ $
%

& &
 =

n

'

$ $
%

& &

57

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then

Pf. Let S* be any feasible solution satisfying weight constraint.

!

v
i

i " S*

$ v
i

i " S*

#

$ v
i

i " S

#

$ (v
i

i " S

+ %)

$ v
i

i" S

+ n%

$ (1+&) v
i

i" S

#

always round up

solve rounded instance optimally

never round up by more than θ

!

(1+") v
i
 # v

i

i $ S*

%
i$ S

%

|S| ≤ n

n θ = ε vmax, vmax ≤ Σi∈S vi

DP alg can take vmax

!

v
i
=

v
i

"

$ $
%

& &
 "

Extra Slides

59

Machine 2

Machine 1a d f

b c e g

yes

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING ≤ P LOAD-BALANCE.

a d

f

b c

ge

length of job f

Time L0

machine 1

machine 2

NP-complete by Exercise 8.26

60

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no ρ-approximation algorithm for
metric k-center problem for any ρ < 2.

Pf. We show how we could use a (2 - ε) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.

 Let G = (V, E), k be an instance of DOMINATING-SET.
 Construct instance G' of k-center with sites V and distances

– d(u, v) = 2 if (u, v) ∈ E
– d(u, v) = 1 if (u, v) ∉ E

 Note that G' satisfies the triangle inequality.
 Claim: G has dominating set of size k iff there exists k centers C*

with r(C*) = 1.
 Thus, if G has a dominating set of size k, a (2 - ε)-approximation

algorithm on G' must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

see Exercise 8.29

