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‣ pricing method: vertex cover

‣ LP rounding: vertex cover

‣ generalized load balancing

‣ knapsack problem
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Coping with NP-completeness

Q.  Suppose I need to solve an NP-hard problem. What should I do?

A.  Sacrifice one of three desired features.

i. Solve arbitrary instances of the problem.

ii. Solve problem to optimality.

iii. Solve problem in polynomial time.

ρ-approximation algorithm.

・Guaranteed to run in poly-time.

・Guaranteed to solve arbitrary instance of the problem

・Guaranteed to find solution within ratio ρ of true optimum.

Challenge.  Need to prove a solution's value is close to optimum,

without even knowing what optimum value is
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Load balancing

Input.  m identical machines; n jobs, job j has processing time tj.

・Job j must run contiguously on one machine.

・A machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.
The load of machine i is Li = Σj ∈ J(i) tj. 

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing.  Assign each job to a machine to minimize makespan.

Machine 2
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Claim.  Load balancing is hard even if only 2 machines.

Pf.  NUMBER-PARTITIONING ≤ P LOAD-BALANCE.
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yes

Load balancing on 2 machines is NP-hard
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length of job f

NP-complete by Exercise 8.26

Machine 2

Machine 1a d f

b c e g

time0

machine 1

machine 2

L



6

List-scheduling algorithm.

・Consider n jobs in some fixed order.

・Assign job j to machine whose load is smallest so far.

Implementation.  O(n log m) using a priority queue.

Load balancing:  list scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
   for i = 1 to m {
      Li ← 0
      J(i) ← ∅

   }

   for j = 1 to n {
      i = argmink Lk
      J(i) ← J(i) ∪ {j}
      Li ← Li + tj
   }
   return J(1), …, J(m)
}

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i
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Load balancing:  list scheduling analysis

Theorem. [Graham 1966]  Greedy algorithm is a 2-approximation.

・First worst-case analysis of an approximation algorithm.

・Need to compare resulting solution with optimal makespan L*.

Lemma 1.  The optimal makespan L*  ≥  maxj tj.   

Pf.  Some machine must process the most time-consuming job.  ▪

Lemma 2.  The optimal makespan 

Pf.  

・The total processing time is  Σj  tj .

・One of m machines must do at least a 1 / m fraction of total work.  ▪€ 

L * ≥ 1
m t jj∑ .
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Believe it or not

€ 

L * ≥ 1
m t jj∑ .
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Load balancing:  list scheduling analysis

Theorem.  Greedy algorithm is a 2-approximation.

Pf.  Consider load Li of bottleneck machine i.

・Let j be last job scheduled on machine i.

・When job j assigned to machine i, i had smallest load.

Its load before assignment is Li  –  tj    ⇒   Li  –  tj   ≤  Lk   for all 1 ≤ k ≤ m.

j

blue jobs scheduled before j

machine i

timeL = Li0 Li - tj 



Theorem.  Greedy algorithm is a 2-approximation.

Pf.  Consider load Li of bottleneck machine i.

・Let j be last job scheduled on machine i.

・When job j assigned to machine i, i had smallest load.

Its load before assignment is Li  –  tj    ⇒   Li  –  tj   ≤  Lk   for all 1 ≤ k ≤ m. 

・Sum inequalities over all k and divide by m:

・Now           ▪
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Load balancing:  list scheduling analysis

€ 

Li −  t j ≤ 1
m Lkk∑

= 1
m tkk∑

≤ L *

  

€ 

Li  =  (Li − t j )
≤ L*

! " # $ # 
+ t j

≤ L*
%

  ≤  2L *.

Lemma 1

Lemma 2
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Load balancing:  list scheduling analysis

Q.  Is our analysis tight?

A.  Essentially yes.

Ex:  m machines, m (m – 1) jobs length 1 jobs, one job of length m.

machine 2 idle

machine 3 idle

machine 4 idle

machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

m = 10

0 9 19

list scheduling makespan = 19
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Load balancing:  list scheduling analysis

Q.  Is our analysis tight?

A.  Essentially yes.

Ex:  m machines, m (m – 1) jobs length 1 jobs, one job of length m.

m = 10

0 9 19

optimal makespan = 10

10
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Load balancing:  LPT rule

Longest processing time (LPT).  Sort n jobs in descending order of 

processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {

   Sort jobs so that t1 ≥ t2 ≥  … ≥ tn
  
   for i = 1 to m {
      Li ← 0

      J(i) ← ∅

   }

   for j = 1 to n {
      i = argmink Lk
      J(i) ← J(i) ∪ {j}

      Li ← Li + tj
   }
   return J(1), …, J(m)
}

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i
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Load balancing:  LPT rule

Observation.  If at most m jobs, then list-scheduling is optimal.

Pf.  Each job put on its own machine.  ▪

Lemma 3.  If there are more than m jobs, L*  ≥  2 tm+1 .

Pf. 

・Consider first m+1 jobs t1, …, tm+1.

・Since the ti's are in descending order, each takes at least tm+1 time. 

・There are m + 1 jobs and m machines, so by pigeonhole principle,

at least one machine gets two jobs.  ▪

Theorem.  LPT rule is a 3/2-approximation algorithm.

Pf.  Same basic approach as for list scheduling.

                        ▪
  

€ 

Li =  (Li − t j )
≤ L*

! " # $ # 
+ t j

≤ 1
2 L*
%

  ≤  3
2 L *.

Lemma 3
( by observation, can assume number of jobs > m )
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Load Balancing:  LPT rule

Q.  Is our 3/2 analysis tight?

A.  No.

Theorem.  [Graham 1969]  LPT rule is a 4/3-approximation.

Pf.  More sophisticated analysis of same algorithm. 

Q.  Is Graham's 4/3 analysis tight?

A.  Essentially yes.

Ex:  m machines, n = 2m + 1 jobs, 2 jobs of length m, m + 1, …, 2m – 1
and one more job of length m.
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Input.  Set of n sites s1, …, sn and an integer k  >  0.

Center selection problem.  Select set of k centers C so that maximum 

distance r(C) from a site to nearest center is minimized.

17

r(C)

Center selection problem

k = 4 centers

center

site
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Center selection problem

Input.  Set of n sites s1, …, sn and an integer k  >  0.

Center selection problem.  Select set of k centers C so that maximum 

distance r(C) from a site to nearest center is minimized.

Notation.  

・dist(x, y) = distance between sites x and y.

・dist(si, C) = min c ∈ C dist(si, c)  = distance from si to closest center.

・r(C) = maxi dist(si, C) = smallest covering radius.

Goal.  Find set of centers C that minimizes r(C), subject to | C | = k.

Distance function properties.

・dist(x, x) = 0       [ identity ]

・dist(x, y) = dist(y, x)     [ symmetry ]

・dist(x, y)  ≤  dist(x, z) + dist(z, y) [ triangle inequality ]
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Center selection example

Ex:  each site is a point in the plane, a center can be any point in the plane, 

dist(x, y) = Euclidean distance.

Remark:  search can be infinite!

center

r(C)

site

k = 4 centers



Greedy algorithm.  Put the first center at the best possible location for a 

single center, and then keep adding centers so as to reduce the covering 

radius each time by as much as possible. 

Remark:  arbitrarily bad!

20

Greedy algorithm:  a false start

greedy center 1

center

site

k = 2 centers



Repeatedly choose next center to be site farthest from any existing center.

Property.  Upon termination, all centers in C are pairwise at least r(C) apart.

Pf.  By construction of algorithm.

GREEDY-CENTER-SELECTION (k, n, s1, s2, … , sn)                          


C ← ∅.

REPEAT k times

      Select a site si with maximum distance dist(si, C).

      C ← C ∪  si.

RETURN C.
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Center selection:  greedy algorithm

site farthest
from any center
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Center selection:  analysis of greedy algorithm

Lemma.  Let C* be an optimal set of centers. Then r(C)  ≤  2r(C*).
Pf.  [by contradiction]  Assume r(C*) < ½ r(C).

・For each site ci ∈ C, consider ball of radius ½ r(C) around it.

・Exactly one ci
* in each ball; let ci be the site paired with ci

*.

・Consider any site s and its closest center ci
* ∈ C*.

・dist(s, C)  ≤  dist(s, ci)  ≤  dist(s, ci*) + dist(ci*, ci)  ≤  2r(C*).

・Thus, r(C)  ≤  2r(C*).   ▪

½ r(C)

ci

ci*s

≤  r(C*) since ci* is closest center

½ r(C)

½ r(C)

Δ-inequality

C*

site



23

Center selection

Lemma.  Let C* be an optimal set of centers. Then r(C)  ≤  2r (C*).

Theorem.  Greedy algorithm is a 2-approximation for center selection 

problem.

Remark.  Greedy algorithm always places centers at sites, but is still within 

a factor of 2 of best solution that is allowed to place centers anywhere.

Question.  Is there hope of a 3/2-approximation? 4/3? 

e.g., points in the plane
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Dominating set reduces to center selection 

Theorem.  Unless P = NP, there no ρ-approximation for center selection

problem for any ρ < 2.

Pf.  We show how we could use a (2 – ε) approximation algorithm for

CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

・Let G = (V, E), k be an instance of DOMINATING-SET.

・Construct instance G' of CENTER-SELECTION with sites V and distances
- dist(u, v) = 1 if (u, v) ∈ E
- dist(u, v) = 2 if (u, v) ∉ E

・Note that G' satisfies the triangle inequality.

・G has dominating set of size k iff there exists k centers C* with r(C*) = 1.

・Thus, if G has a dominating set of size k, a (2 – ε)-approximation 

algorithm for CENTER-SELECTION would find a solution C* with r(C*) = 1 

since it cannot use any edge of distance 2.  ▪
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Weighted vertex cover

Definition.  Given a graph G = (V, E), a vertex cover is a set S ⊆ V such that 

each edge in E has at least one end in S.

Weighted vertex cover.  Given a graph G with vertex weights, find a vertex 

cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 11
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Pricing method

Pricing method.  Each edge must be covered by some vertex. 

Edge e = (i, j) pays price pe ≥ 0 to use both vertex i and j.

Fairness.  Edges incident to vertex i should pay ≤ wi in total.

Fairness lemma.  For any vertex cover S and any fair prices pe :  ∑e pe  ≤  w(S). 

Pf.                   ▪

4

9

2

2

€ 

for each vertex i : pe
e=(i , j)
∑ ≤ wi

sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S



28

Pricing method

Set prices and find vertex cover simultaneously.

WEIGHTED-VERTEX-COVER (G, w)                          


S ← ∅.

FOREACH e ∈ E

pe ← 0.

WHILE (there exists an edge (i, j) such that neither i nor j is tight)

      Select such an edge e = (i, j).

      Increase pe as much as possible until i or j tight.

S ← set of all tight nodes.

RETURN S.
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Pricing method example

vertex weight

price of edge a-b
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Pricing method:  analysis

Theorem.  Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER.

Pf.  

・Algorithm terminates since at least one new node becomes tight after 

each iteration of while loop.

・Let S = set of all tight nodes upon termination of algorithm.

S is a vertex cover:  if some edge (i, j) is uncovered, then neither i nor j
is tight. But then while loop would not terminate.

・Let S* be optimal vertex cover. We show w(S)  ≤  2 w(S*).

€ 

w(S) = wi
i∈ S
∑ =

i∈ S
∑ pe

e=(i, j)
∑ ≤

i∈V
∑ pe

e=(i, j)
∑ = 2 pe

e∈ E
∑ ≤ 2w(S*).

all nodes in S are tight S ⊆ V,
prices ≥ 0

fairness lemmaeach edge counted twice
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Weighted vertex cover

Given a graph G = (V, E) with vertex weights wi ≥ 0, find a min weight subset 

of vertices S ⊆ V such that every edge is incident to at least one vertex in S.

3

6

10

7

10

7

9

16

23 33

6

9

32

10

total weight = 6 + 23 + 7 + 9 + 10 = 55
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Weighted vertex cover:  IP formulation

Given a graph G = (V, E) with vertex weights wi ≥ 0, find a min weight subset 

of vertices S ⊆ V such that every edge is incident to at least one vertex in S.

Integer programming formulation.

・Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1–1 correspondence with 0/1 assignments:

 S = { i ∈ V : xi = 1}. 

・Objective function:  minimize  Σi wi xi. 

・Must take either vertex i or j (or both):  xi + xj  ≥ 1.

€ 

xi  =  
 0 if vertex i is not in vertex cover
 1 if vertex i is in vertex cover
⎧ 
⎨ 
⎩ 
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Weighted vertex cover:  IP formulation

Weighted vertex cover.  Integer programming formulation.

Observation.  If x* is optimal solution to (ILP), then S = { i ∈ V : xi* = 1}
is a min weight vertex cover.

  

€ 

( ILP) min  wi xi
i  ∈  V
∑

s. t. xi + x j ≥ 1 (i, j)∈ E
xi ∈ {0,1} i ∈V
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Integer programming

Given integers aij, bi, and cj, find integers xj that satisfy:

Observation.  Vertex cover formulation proves that INTEGER-PROGRAMMING is 

an NP-hard search problem.

€ 

aij x j
j=1

n
∑ ≥ bi          1≤ i ≤ m

xj ≥ 0           1≤ j ≤ n
x j integral 1≤ j ≤ n

€ 

max ct x
s. t. Ax ≥ b         

x integral
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Linear programming

Given integers aij, bi, and cj, find real numbers xj that satisfy:

Linear.  No x2,  xy,  arccos(x),  x(1 – x), etc.

Simplex algorithm.  [Dantzig 1947]  Can solve LP in practice.

Ellipsoid algorithm.  [Khachian 1979]  Can solve LP in poly-time.

€ 

(P) max cj x j
j=1

n
∑

s. t. aij x j
j=1

n
∑ ≥ bi 1≤ i ≤ m

xj ≥ 0 1≤ j ≤ n

€ 

(P) max ct x
s. t. Ax ≥ b

x ≥ 0
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LP feasible region

LP geometry in 2D.

x1 + 2x2 = 6
2x1 + x2 = 6

x2 = 0

x1 = 0
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Weighted vertex cover:  LP relaxation

Linear programming relaxation.

Observation.  Optimal value of (LP) is  ≤  optimal value of (ILP).

Pf.  LP has fewer constraints. 

Note.  LP is not equivalent to vertex cover. 

Q.  How can solving LP help us find a small vertex cover?

A.  Solve LP and round fractional values.

  

€ 

(LP) min  wi xi
i  ∈  V
∑

s. t. xi + x j ≥ 1 (i, j)∈ E
xi ≥ 0 i ∈V

½½

½
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Weighted vertex cover:  LP rounding algorithm

Lemma.  If x* is optimal solution to (LP), then S = { i ∈ V  : xi* ≥ ½} is a

vertex cover whose weight is at most twice the min possible weight.

Pf.  [S is a vertex cover]

・Consider an edge (i, j) ∈ E.

・Since xi* + xj*  ≥  1, either xi* ≥ ½ or  xj* ≥ ½   ⇒  (i, j) covered.

Pf.  [S has desired cost]

・Let S* be optimal vertex cover. Then

Theorem.  The rounding algorithm is a 2-approximation algorithm.

Pf.  Lemma + fact that LP can be solved in poly-time.

€ 

wi
i ∈ S*
∑   ≥  wi xi

*

i ∈ S
∑   ≥   1

2 wi
i ∈ S
∑

LP is a relaxation xi*  ≥  ½



Theorem.  [Dinur-Safra 2004]  If P ≠ NP, then no ρ-approximation for 

WEIGHTED-VERTEX-COVER for any ρ < 1.3606 (even if all weights are 1).

Open research problem.   Close the gap.
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Weighted vertex cover inapproximability

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur∗ Samuel Safra†

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

1 Introduction

The basic purpose of Computational Complexity Theory is to classify computational problems
according to the amount of resources required to solve them. In particular, the most basic task
is to classify computational problems to those that are efficiently solvable and those that are
not. The complexity class P consists of all problems that can be solved in polynomial-time. It
is considered, for this rough classification, as the class of efficiently-solvable problems. While
many computational problems are known to be in P, many others, are neither known to be in
P, nor proven to be outside P. Indeed many such problems are known to be in the class NP,
namely the class of all problems whose solutions can be verified in polynomial-time. When it
comes to proving that a problem is outside a certain complexity class, current techniques are
radically inadequate. The most fundamental open question of Complexity Theory, namely, the
P vs. NP question, may be a particular instance of this shortcoming.

While the P vs NP question is wide open, one may still classify computational problems into
those in P and those that are NP-hard [Coo71, Lev73, Kar72]. A computational problem L
is NP-hard if its complexity epitomizes the hardness of NP. That is, any NP problem can be
efficiently reduced to L. Thus, the existence of a polynomial-time solution for L implies P=NP.
Consequently, showing P̸=NP would immediately rule out an efficient algorithm for any NP-
hard problem. Therefore, unless one intends to show NP=P, one should avoid trying to come
up with an efficient algorithm for an NP-hard problem.

Let us turn our attention to a particular type of computational problems, namely, optimization
problems — where one looks for an optimal among all plausible solutions. Some optimization
problems are known to be NP-hard, for example, finding a largest size independent set in a
graph [Coo71, Kar72], or finding an assignment satisfying the maximum number of clauses in a
given 3CNF formula (MAX3SAT) [Kar72].

∗ The Miller Institute, UC Berkeley. Email: iritd@cs.berkeley.edu.
† School of Mathematics and School of Computer Science, Tel Aviv University and The Miller Institute, UC

Berkeley. Research supported in part by the Fund for Basic Research administered by the Israel Academy of
Sciences, and a Binational US-Israeli BSF grant. Email: safra@math.tau.ac.il.

1
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Generalized load balancing

Input.  Set of m machines M; set of n jobs J.

・Job j ∈ J must run contiguously on an authorized machine in Mj  ⊆  M.

・Job j ∈ J has processing time tj.

・Each machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.
The load of machine i is Li = Σj ∈ J(i) tj. 

Def. The makespan is the maximum load on any machine = maxi Li.

Generalized load balancing.  Assign each job to an authorized machine to 

minimize makespan.
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Generalized load balancing:  integer linear program and relaxation

ILP formulation.  xij = time machine i spends processing job j.

LP relaxation.  
€ 

(IP) min L
s. t. xi j

i
∑ = t j for all j ∈ J

xi j
j
∑ ≤ L for all i ∈ M

xi j ∈ {0, t j} for all j ∈ J and i ∈ M j

xi j = 0 for all j ∈ J and i ∉ M j

€ 

(LP) min L
s. t. xi j

i
∑ = t j for all j ∈ J

xi j
j
∑ ≤ L for all i ∈ M

xi j ≥ 0 for all j ∈ J and i ∈ M j

xi j = 0 for all j ∈ J and i ∉ M j
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Generalized load balancing:  lower bounds

Lemma 1.  The optimal makespan L*  ≥   maxj tj.

Pf.  Some machine must process the most time-consuming job.  ▪ 

Lemma 2.  Let L be optimal value to the LP. Then, optimal makespan  L* ≥  L.

Pf.  LP has fewer constraints than IP formulation.  ▪



Lemma 3.  Let x be solution to LP.  Let G(x) be the graph with an edge 

between machine i and job j if xij > 0.  Then G(x) is acyclic.

Pf.  (deferred)

45

Generalized load balancing:  structure of LP solution

G(x) acyclic

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0

job

machine
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Generalized load balancing:  rounding

Rounded solution.  Find LP solution x where G(x) is a forest.  Root forest G(x) 
at some arbitrary machine node r.

・If job j is a leaf node, assign j to its parent machine i.

・If job j is not a leaf node, assign j to any one of its children.

Lemma 4.  Rounded solution only assigns jobs to authorized machines.

Pf.  If job j is assigned to machine i, then xij > 0.  LP solution can only assign 

positive value to authorized machines.   ▪

job

machine
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Generalized load balancing:  analysis

Lemma 5.  If job j is a leaf node and machine i = parent(j), then xij = tj.

Pf.

・Since i is a leaf, xij = 0 for all j ≠ parent(i).

・LP constraint guarantees Σi xij = tj.   ▪

Lemma 6.  At most one non-leaf job is assigned to a machine.

Pf.  The only possible non-leaf job assigned to machine i is parent(i).  ▪

job

machine
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Generalized load balancing:  analysis

Theorem.  Rounded solution is a 2-approximation.

Pf.

・Let J(i) be the jobs assigned to machine i.

・By LEMMA 6, the load Li on machine i has two components:

- leaf nodes:

- parent:

・Thus, the overall load Li  ≤  2 L*.   ▪

€ 

t j
  j  ∈  J(i)
j is a leaf

∑  = xij
  j  ∈  J(i)
j is a leaf

∑   ≤ xij
j  ∈  J
∑  ≤  L  ≤  L *

Lemma 5
Lemma 2 (LP is a relaxation)

€ 

tparent(i)  ≤  L *

LP

Lemma 1
optimal value of LP
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Flow formulation of LP.

Observation.  Solution to feasible flow problem with value L are in

1-to-1 correspondence with LP solutions of value L.  

Generalized load balancing:  flow formulation

∞

€ 

xi j
i
∑ = t j for all j ∈ J

xi j
j
∑ ≤ L for all i ∈ M

xi j ≥ 0 for all j ∈ J and i ∈ M j

xi j = 0 for all j ∈ J and i ∉ M j
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Lemma 3.  Let (x, L) be solution to LP.  Let G(x) be the graph with an edge 

from machine i to job j if xij > 0.  We can find another solution (x', L) such that 

G(x') is acyclic.

Pf.  Let C be a cycle in G(x).

・Augment flow along the cycle C. 

・At least one edge from C is removed (and none are added).

・Repeat until G(x') is acyclic.  ▪

Generalized load balancing:  structure of solution

3

4

4

3

2 

3

1

2

6

5

G(x)

3

4

4

3

3 

4

1

6

5

G(x')

augment flow
along cycle C

flow conservation maintained
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Conclusions

Running time.  The bottleneck operation in our 2-approximation is

solving one LP with m n + 1 variables. 

Remark.  Can solve LP using flow techniques on a graph with m + n + 1 nodes: 

given L, find feasible flow if it exists.  Binary search to find L*.

Extensions:  unrelated parallel machines.  [Lenstra-Shmoys-Tardos 1990] 

・Job j takes tij time if processed on machine i.

・2-approximation algorithm via LP rounding.

・If P ≠ NP, then no no ρ-approximation exists for any ρ < 3/2.

Mathematical Programming 46 (1990) 259-271 259 
North-Holland 

A P P R O X I M A T I O N  A L G O R I T H M S  FOR S C H E D U L I N G  
UNRELATED PARALLEL M A C H I N E S  

Jan Karel LENSTRA 
Eindhoven University of Technology, Eindhoven, The Netherlands, and 
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands 

David B. SHMOYS and l~va TARDOS 
Cornell University, Ithaca, NY, USA 

Received 1 October 1987 
Revised manuscript 26 August 1988 

We consider the following scheduling problem. There are m parallel machines and n independent 
.jobs. Each job is to be assigned to one of the machines. The processing of .job j on machine i 
requires time Pip The objective is to lind a schedule that minimizes the makespan. 

Our main result is a polynomial algorithm which constructs a schedule that is guaranteed to 
be no longer than twice the optimum. We also present a polynomial approximation scheme for 
the case that the number of machines is fixed. Both approximation results are corollaries of a 
theorem about the relationship of a class of integer programming problems and their linear 
programming relaxations. In particular, we give a polynomial method to round the fractional 
extreme points of the linear program to integral points that nearly satisfy the constraints. 

In contrast to our main result, we prove that no polynomial algorithm can achieve a worst-case 
ratio less than ~ unless P = NIL We finally obtain a complexity classification for all special cases 
with a fixed number of processing times. 

Key words: Scheduling, parallel machines, approximation algorithm, worst case analysis, linear 
programming, integer programming, rounding. 

1. Introduction 

Although the performance of approximation algorithms has been studied for over 
twenty years, very little is understood about the structural properties of a problem 
that permit good performance guarantees. In fact, there are practically no tools to 
distinguish those problems for which there does exist a polynomial algorithm for 
any performance bound, and those for which this is not the case. One problem area 
in which these questions have received much attention is that of scheduling and 
bin packing. We examine a scheduling problem for which all previously analyzed 
polynomial  algorithms have particularly poor performance guarantees. We present 

A preliminary version of this paper appeared in the Proceedings c~f the 28th Annual lEEK Symposium 
on the Foundations of Computer Stience (Computer Society Press of the lEEK, Washington, I).C., 1987) 
pp. 217 224. 



SECTION 11.8

11.  APPROXIMATION ALGORITHMS

‣ load balancing

‣ center selection

‣ pricing method: vertex cover

‣ LP rounding: vertex cover

‣ generalized load balancing

‣ knapsack problem
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Polynomial-time approximation scheme

PTAS.  (1 + ε)-approximation algorithm for any constant ε > 0. 

・Load balancing.  [Hochbaum-Shmoys 1987]

・Euclidean TSP.  [Arora, Mitchell 1996]

Consequence.  PTAS produces arbitrarily high quality solution,

but trades off accuracy for time. 

This section.  PTAS for knapsack problem via rounding and scaling.
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Knapsack problem

Knapsack problem.

・Given n objects and a knapsack.

・Item i has value vi  > 0 and weighs wi  >  0.

・Knapsack has weight limit W.

・Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

we assume wi ≤ W for each i

original instance (W = 11)

item value weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7
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Knapsack is NP-complete

KNAPSACK.  Given a set X, weights wi  ≥ 0, values vi  ≥ 0, a weight limit W, and a 

target value V, is there a subset S  ⊆ X such that:

SUBSET-SUM.  Given a set X, values ui  ≥ 0, and an integer U, is there a subset S  
⊆ X whose elements sum to exactly U ?

Theorem.  SUBSET-SUM ≤ P  KNAPSACK.

Pf.  Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK instance:

  

€ 

wi
i∈S
∑ ≤ W

vi
i∈S
∑ ≥ V

€ 

vi = wi = ui   ui
i∈S
∑ ≤ U

V =W =U ui
i∈S
∑ ≥ U
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Knapsack problem:  dynamic programming I

Def.  OPT(i, w) = max value subset of items 1,..., i with weight limit w.

Case 1.  OPT does not select item i.

・OPT selects best of 1, …, i – 1 using up to weight limit w.

Case 2.  OPT selects item i.

・New weight limit = w – wi.

・OPT selects best of 1, …, i – 1 using up to weight limit w – wi.

Theorem.  Computes the optimal value in O(n W) time.

・Not polynomial in input size.

・Polynomial in input size if weights are small integers.

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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Knapsack problem:  dynamic programming II

Def.  OPT(i, v) = min weight of a knapsack for which we can obtain a solution 

of value ≥ v using a subset of items 1,..., i.

Note.  Optimal value is the largest value v such that OPT(i, v)  ≤  W.

Case 1.  OPT does not select item i.

・OPT selects best of 1, …, i – 1 that achieves value  v.

Case 2.  OPT selects item i.

・Consumes weight wi, need to achieve value v – vi.

・OPT selects best of 1, …, i – 1 that achieves value v – vi.

OPT (i, v) =

�
��

��

0 v � 0

� i = 0 v > 0

min {OPT (i � 1, v), wi + OPT (i � 1, v � vi)}
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Knapsack problem:  dynamic programming II

Theorem.  Dynamic programming algorithm II computes the optimal value 

in O(n2 vmax) time, where vmax is the maximum of any value.

Pf.

・The optimal value V* ≤  n vmax.

・There is one subproblem for each item and for each value v ≤ V*.

・It takes O(1) time per subproblem. ▪

Remark 1.  Not polynomial in input size!

Remark 2.  Polynomial time if values are small integers.
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Knapsack problem:  polynomial-time approximation scheme

Intuition for approximation algorithm.

・Round all values up to lie in smaller range.

・Run dynamic programming algorithm II on rounded/scaled instance.

・Return optimal items in rounded instance.

original instance (W = 11)

item value weight

1 934221 1

2 5956342 2

3 17810013 5

4 21217800 6

5 27343199 7

rounded instance (W = 11)

item value weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7
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Knapsack problem:  polynomial-time approximation scheme

Round up all values:  

・0  <  ε  ≤  1 = precision parameter.

・vmax   = largest value in original instance.

・θ	
 	
 	
 =  scaling factor = ε vmax / 2n.

Observation.  Optimal solutions to problem with    are equivalent to

optimal solutions to problem with    .

Intuition.     close to v so optimal solution using    is nearly optimal;

   small and integral so dynamic programming algorithm II is fast.

  

€ 

ˆ v 
  

€ 

v 

  

€ 

ˆ v 
  

€ 

v   

€ 

v 

v̄i =
�vi

�

�
� , v̂i =

�vi

�

�



Theorem.  If S is solution found by rounding algorithm and S*
is any other feasible solution, then

Pf.  Let S* be any feasible solution satisfying weight constraint. 
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Knapsack problem:  polynomial-time approximation scheme

solve rounded
instance optimally
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Knapsack problem:  polynomial-time approximation scheme

Theorem. For any ε > 0, the rounding algorithm computes a feasible solution 

whose value is within a  (1 + ε) factor of the optimum in O(n3 / ε) time. 

Pf.

・We have already proved the accuracy bound.

・Dynamic program II running time is                ,  where  

€ 

O(n2 ˆ v max)

€ 

ˆ v max  =
vmax

θ

⎡ 
⎢ ⎢ 

⎤ 
⎥ ⎥ 

 =  n
ε

⎡ 
⎢ ⎢ 

⎤ 
⎥ ⎥ 


