
Compilation
TP 3 : Types

C. Alias & S. Filip

credits: G. Iooss

Exercise 1. Types construction
Download the file dcc_types.tgz and decompress it.

• Inspect the files Type.h/.cc. Inside main, write the code to create and print-out the type
char[8].

• Open the file parser.ypp. What is the attribute of the non-terminal type? Complete the rules
of type to build correctly the types.

• Inspect the files SymbolTable.h/.cc. In parser.ypp, what is the purpose of add_type($3,$2)
(after line 215 - rule of type_def)? Add print_symbols(cout) to print-out the registered types in
the symbol table (Note: Instead of doing it in main, do it inside the rule prog, before normalizing
the types). Test on tests/test.c.

Exercise 2. Normalization and well-funded types
• Type owns a method print_dot() which prints out the dotty representation (graph) of the current

type (to have a ".ps": dot -Tps test.dot > test.ps). Experiment.

• We still have identifiers inside the types, and we need to replace them by their definitions. This
step is called normalization and happens after the last reduction of type_def_list (last line of
parser.ypp).

• Inspect the code of normalize_types (SymbolTable.cc). Print-out the graph (print_dot) of
the normalized list_t.

• Inspect the code of is_well_formed (Type.cc). After this step, we are sure that all the types
are well-formed.

• What does reset_functions() do? (parser.ypp, last line)

Exercise 3. Type equivalence
Before checking the functions, we need an equivalence between types. Open Type.cc (line 116), and
implement the equivalence of types.

Exercise 4. Type control
Each time a function is declared (parser.ypp, line 478), its signature is added to the symbol table.
add_function() creates a new (signature of the) current function. Then, add_argument_type() adds
the types of the arguments. add_argument() declares an argument and add_local_var declares a new
local variable. Then, these informations are used to type the expressions inside the function body.

• Inspect the rules of function, declare_args, declare_local_vars.

• It is time to control the types... Inspect the rules of stmt. How do we manage the polymorphic
binding?

• Inspect the rule for the return.

• Inspect the procedure call (function that returns void). What does arg_type correspond to? What
is type_check() doing?

• Complete the rules of the non-terminal expr to control the types.

