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Résumé
Les espaces hyperboliques ont récemment attiré l’attention
de la communauté de l’apprentissage automatique du fait
qu’ils permettent de mieux représenter les données hiérar-
chiques que les espaces Euclidiens. En conséquence,
de nombreux modèles populaires d’apprentissage automa-
tique, tels que les Réseaux de Neurones de Graphes
(GNNs) et les Auto-Encodeurs Variationnels (VAEs), ont
été généralisés avec succès afin de représenter des données
dans les espaces hyperboliques. Dans cet article, nous
cherchons à savoir si les promesses faites par les différents
travaux utilisant les espaces hyperboliques peuvent être at-
teintes dans le contexte des données de télédétection. À
notre connaissance, il s’agit de la première évaluation des
bénéfices des espaces hyperboliques dans la communauté
de la télédétection. Nous nous focalisons particulièrement
sur le problème de classification de scènes d’images de
télédétection, dans lequel les exemples sont des images
dont les étiquettes sémantiques sont généralement intrin-
sèquement structurées. Nous utilisons un Auto-Encodeur
Variationnel pour projeter les données dans un espace
latent hyperbolique et nous analysons l’organisation de
l’espace induit en fonction de la structure des labels. Nous
supervisons également l’apprentissage du VAE afin de
guider la construction de l’espace latent en fonction de la
hiérarchie des classes. Nous réalisons des expériences sur
le jeu de données de télédétection PatternNet et effectuons
une évaluation sur une tâche de classification, en prenant
en compte la distance hiérarchique inter-classes. Les ré-
sultats expérimentaux indiquent que l’espace hyperbolique
n’améliore pas la précision globale de la classification par
rapport à un espace Euclidien, mais permet d’améliorer
légèrement les performances lorsque l’on considère la dis-
tance entre l’étiquette prédite et la vraie étiquette dans la
hiérarchie des labels.

Mots Clef
Espaces hyperboliques, Auto-Encodeur variationnel,
télédétection, classification de scènes, labels hiérar-
chiques.

Abstract
Hyperbolic spaces have recently attracted attention in the
machine learning community as they better handle hierar-

chical data than Euclidean spaces. Consequently, several
popular machine learning models, such as Graph Neural
Networks (GNNs) and Variational Auto-Encoders (VAEs),
have been successfully generalized for data embedding in
hyperbolic spaces. In this paper, we investigate whether
the promises given by the various works that use hyper-
bolic spaces can be fulfilled in a remote sensing data con-
text. To our knowledge, this is the first evaluation of the
benefits of the hyperbolic spaces in the Remote Sensing
community. We specifically focus on the remote sensing
image scene classification problem, in which samples are
images whose semantic labels usually have an intrinsic hi-
erarchical structure. We use a Variational Auto-Encoder
to project the data in a hyperbolic latent space and study
the structure of the induced space w.r.t. the structure of
the labels. We also supervise the VAE training in order to
drive the latent space construction according to the class
hierarchy. We carry out experiments on the remote sensing
dataset PatternNet and perform an evaluation on a classifi-
cation task, taking into account the inter-class hierarchical
distance. Experimental results show that the Hyperbolic
Space does not improve the global classification accuracy
when compared with an Euclidean Space, but allows one to
slightly improve the deviation among the misclassified ex-
amples when taking into account the distance between the
predicted and the actual label in the label hierarchy.

Keywords
Hyperbolic spaces, Variational Auto-Encoder, remote
sensing, scene classification, hierarchical labels.

1 Introduction
In most machine learning applications, the learning is per-
formed on an Euclidean space, mostly because it has con-
venient mathematical properties, such as vectorial struc-
tures or closed forms for computing distances. Never-
theless, in many domains, real-world data do not possess
an Euclidean structure [1] but can rather be represented
with a hierarchical structure. In that case, they cannot
be embedded in an Euclidean space with low distortion
[2]. In the opposite, hyperbolic spaces [3] are manifolds
that have been shown to represent efficiently hierarchi-
cal data in many applications, e.g. link prediction [3, 4],
image embedding [12, 13], hierarchical clustering [11] or



word emdedding [10]. As such, there have been consid-
erable recent works that use hyperbolic spaces to learn
data representations, and various machine learning meth-
ods have been adapted to that setting. Among them, one
can cite the hyperbolic-SVM [5] or hyperbolic neural net-
work [6]. Other studies have provided a generalization of
normal distributions on Hyperbolic spaces that can be used
to build and learn a probabilistic model like Variational
Auto-Encoder (VAE) [7, 8]. The proposed Hyperbolic
VAEs have been used to embed images into a hyperbolic la-
tent space then infer their underlying hierarchical structure.
These methods have been validated on MNIST and Atari
2600 Breakout datasets, showing that the H-VAE is able to
retrieve their hierarchical nature. However, those datasets
are simple and do not reflect complex scenarii as in real-
world images. Moreover, the MNIST dataset is not hier-
archical whereas real-world images can show hierarchical
structures, either within the image [9], or between the im-
ages, when a hierarchy of classes is available [12, 13, 14].
Considering these particularities, it is a challenging task
to use these hyperbolic VAEs to embed real-world images
and expect the latent space to be hierarchically organized
according to the image hierarchy. An interesting study [15]
was suggesting to rather guide the VAE learning in order to
drive the construction of its latent space such that it reflects
a given class hierarchy.
In this paper, we aim to investigate whether the promises
given by H-VAE can be fulfilled in a remote sensing data
context. We focus especially on the scene classification
problem [18, 21], which is an active research topic in the
field of computer vision applied to earth observation. Its
aim is to classify scene images into a set of classes ac-
cording to the image contents and has been applied in a
wide variety of scenarii (land use/land cover mapping, dis-
aster relief, etc.). In many contexts, the images’ labels are
not flat but are rather hierarchically organized, depending
on the level of details that is required. To the best of our
knowledge, this is the first evaluation of hyperbolic spaces
in the remote sensing community. In contrary to several
works that have showed the interest of working in hyper-
bolic spaces when the data are hierarchical, we could not
show the interest of using such a space in the remote sens-
ing scene classification application.
The rest of this paper is structured as follows. After pro-
viding some details about the hyperbolic spaces, Section 2
describes the H-VAE that will be used to provide an em-
bedding of the images. Section 3 details our motivation
and how we guide the VAE learning. Section 4 discusses
the experimental results. Conclusion and future works are
given in Section 5.

2 Hyperbolic Variational Auto-
encoders

In this section, we briefly recall the required background
on Variational Auto-Encoders in the Euclidean space. We
then review the Lorentz model of hyperbolic geometry, in

which we outline some of the mathematical preliminaries
that are needed to define the Hyperbolic version of VAE.

2.1 Variational Auto-Encoder
Variational Auto-Encoder (VAE) [16] is a probabilistic
generative model relevant to representation learning in
which we aim to learn good representations, such as inter-
pretable representations or representations that give a bet-
ter generalization [7]. A VAE model is composed of two
components: a (stochastic) encoder that embeds observa-
tions x into a low dimensional latent space z ∈ Z, and a
decoder generating observations x̂ from this latent space.
Formally, the VAE consists of a probabilistic decoder de-
fined as a likelihood function pθ(x(i)|z) and parameterized
by θ which generates data x̂(i) given the latent variable z as
well as a posterior distribution qφ(z|x(i)) that can be con-
sidered as a probabilistic encoder parameterized by φ.
The parameters φ and θ are learned simultaneously by
maximizing the evidence lower bound (ELBO). ELBO is
defined for each observation x(i) by:

log pθ(x
(i)) ≥Ez∼qφ(z|x(i))[log pθ(x

(i)|z)]

−DKL(qφ(z|x(i))||pθ(z)),
(1)

where the first term after the inequality encourages the de-
coder to learn to reconstruct the observation, and the sec-
ond is a regularization term that promotes output represen-
tations to follow a predefined distribution, E and DKL be-
ing respectively the expectation and the Kullback–Leibler
(KL) divergence. Usually, pθ(z) is chosen as a standard
Normal distribution with mean zero and variance one.
In practice, we approximate the reconstruction term using
a Monte Carlo estimator:

Ez∼qφ(z|x(i))[log pθ(x
(i)|z)] ≈

1

L

L∑
l=1

log pθ(x
(i)|gφ(ε(i,l), x(i))),

(2)

where L is the number of samples per data point x(i),
gφ(ε(i,l), x(i)) = µ

(i)
φ + σ

(i)
φ � ε(i,l) is the reparame-

terization trick, � indicates an element-wise product and
ε(i,l) ∼ N (0, I) is a random noise vector. µ(i)

φ and σ(i)
φ are

outputs of the encoder, representing respectively the mean
and the standard deviation of the target distribution.
The regularization term DKL encourages the approximate
posterior qφ(z|x(i)) to be close to the prior pθ(z) and is
defined as:

DKL(qφ(z|x(i))||pθ(z)) = Eqφ
[
log

qφ(z|x(i))
pθ(z)

]
= −1

2

J∑
j=1

[
1 + log(σ

(i)
j,φ

2
)− σ(i)

j,φ

2
− µ(i)

j,φ

2]
,

(3)

where J is the dimension of z, µ(i)
j,φ and σ(i)

j,φ denote the jth

element of the encoder outputs.



2.2 Hyperbolic Geometry
Hyperbolic spaces have recently attracted a lot of atten-
tion in the machine learning community as they are more
suitable to handle hierarchical data than Euclidean spaces.
This is thanks to their geometric properties that make the
space growing exponentially with distance from the origin
unlike the Euclidean space which grows polynomially [3]
(see Figure 1). Within the Riemannian geometry frame-
work, hyperbolic spaces are manifolds and several models
of n dimensional spaces exist. In this paper, we consider
a particular model of Hyperbolic spaces that has recently
become very successful, namely the Lorentz model (also
known as the hyperboloid model). It is computationally at-
tractive as it has a simple closed-form distance function as
well as analytical forms for the exponential map, logarith-
mic map and parallel transport, preliminary mathematical
notions that will be necessary to adjust the Euclidean VAE
to hyperbolic spaces. We now briefly review the Lorentz
model (Figure 2). We do not assume a background in Rie-
mannian geometry, readers can refer to [8] for more details.

Lorentz Model. The Lorentz Model is a Riemannian
manifold defined as Ln = (Hn, gl), where gl is the Rie-
mannian metric tensor and Hn denotes the upper sheet of
a two sheeted n-dimentional hyperboloid:

Hn = {x ∈ Rn+1 : 〈x, x〉L = −1, x0 > 0},

where 〈., .〉L is the Lorentzian inner product, also known as
the metric tensor, defined as: for x, y ∈ Rn+1, 〈x, y〉L =
−x0y0 +

∑n
i=1 xiyi.

We note that for any point x = (x0, x
′) ∈ Rn+1

x ∈ Hn ⇔ x0 =
√

1 + ||x′||2.

The origin of the hyperbolic space is referred as a one-hot
vector µ0 = [1, 0, . . . , 0] ∈ Hn. In addition, the short-
est path between two points x, y ∈ Hn is given by the
geodesic distance defined as:

dl(x, y) = arcosh(−〈x, y〉L).

Exponential and logarithmic map. Working in hyper-
bolic spaces is not easy: it requires generalizing basic op-
erations, such as vector addition, matrix-vector multipli-
cation and vector translation to these spaces, which is not
trivial or sometimes even impossible [6]. A simple and
straightforward way to accomplish this is to move the data
from a hyperbolic space to a tangent space, a local Eu-
clidean space in which the operations are constructed as
in Euclidean space [6]. To switch respectively from and to
the hyperbolic space, exponential (resp. logarithmic) map
is employed. We formalize these notions as follows.

The tangent space TµHn at point µ ∈ Hn can be de-
scribed as a subspace of Rn+1. Formally, it is represented
by a set of points u ∈ Rn+1 satisfying the orthogonality
relation with respect to the Lorentzian product:

TµHn = {u ∈ Rn+1 | 〈u, µ〉L = 0}.

Note that Tµ0Hn, the tangent space at the origin, consists
of points u ∈ Rn+1 with u0 = 0 and ||u||L = 〈x, y〉L =
||u||2.

The exponential map This is a function that projects a
tangent space vector u ∈ TµHn onto the hyperbolic space
Hn. It is defined locally and only projects a small neigh-
bourhood of the tangent space origin µ onto its neighbour-
hood in the hyperbolic space. The exponential map of the
Lorentz model is then given by:

expµ : TµHn → Hn

expµ(u) = cosh(||u||L).µ+ sinh(||u||L).
u

||u||L
.

(4)

The logarithmic map Also known as the inverse expo-
nential map. It is defined as:

logµ : Hn → TµHn

logµ(z) = exp−1µ (z) =
arcosh(α)√
α2 − 1

(z − αµ),
(5)

where z, µ ∈ Hn and α = −〈µ, z〉L.

Parallel transport. For any couple of points µ, ν ∈ Hn,
parallel transport from ν to µ is a map that carries a vec-
tor v ∈ TνHn along the geodesic to their corresponding
vector v′ ∈ TµHn while preserving its metric tensor i.e.
〈PTν→µ(v), PTν→µ(u)〉L = 〈v, u〉L. For the Lorentz
model, this map is given by

PTν→µ(v) = v +
〈µ− αν, v〉L

α+ 1
(ν + µ), (6)

where α is defined as above. The inverse parallel transport
PT−1ν→µ simply carries back the vector in TµHn to TνHn
along the geodesic and is defined as:

v = PT−1ν→µ(u) = PTµ→ν(u). (7)

Equipped with all these mathematical preliminaries about
the Lorentz model, we can now describe the Hyperbolic
VAE.

2.3 Hyperbolic Variational Auto-Encoder
Hyperbolic Variational Auto-Encoder (H-VAE) is a vari-
ant of VAE (we choose the E-VAE notation for Euclidean
VAE) in which the latent variables are defined on a Hyper-
bolic space. As such, it is necessary to adapt the normal
distribution defined for an Euclidean space so that it oper-
ates in a Hyperbolic space. A wrapped normal distribution
was proposed by [8] for the Lorentz model, which we de-
note G(µ,Σ), where µ ∈ Hn and Σ are defined as positive.
Sampling from this distribution can be summarized in 3
steps:

(1) sample a vector from the Gaussian distribution ṽ ∼
N (0,Σ) and interpret it as an element of the tangent
space at the origin µ0, v = [0, ṽ] ∈ Tµ0

Hn;



Figure 1 – Left: Embeddings of a binary tree in Poincaré disk (one of the Hyperbolic models), Right: Geodesic and distances.
The distance dH(x, y) approaches dH(x,O) + dH(O, y) as x and y move towards the outside of the disk (Figure from [2]).

𝑣

𝑢
𝑧

Figure 2 – (a) in red the one-dimensional Lorentz model H1 and its tangent space TµH1 (blue). (b) Parallel transport that
carries b ∈ Tµ0

H1 (green) to u ∈ TµH1 (blue) while preserving ||.||L . (c) Exponential map projects the u ∈ TµH1 (blue) to
z ∈ H1(red) (Figure from [8]).

(2) parallel transport v ∈ Tµ0Hn to the tangent space of
the desired location µ, u = PTµ0→µ(v);

(3) use expµ to map the transported vector u from the tan-
gent space TµHn to the manifoldHn, z = expµ(u).

This sampling strategy is used in the H-VAE as a reparam-
eterization trick. Therefore our hyperbolic latent variables
z(i) ∼ qφ(z|x(i)) are defined as:

z(i) = gφ(v(i), µ
(i)
φ ) = exp

µ
(i)
φ

(PT
µ0→µ(i)

φ

(v(i))), (8)

where v(i) = [0, ṽ(i)], ṽ(i) ∼ N (0,Σ
(i)
φ ), Σ

(i)
φ and µ

(i)
φ

are outputs of the encoder. µ(i)
φ is assured to be in Hn by

applying expµ0
to the final layer of the encoder.

The Kullback-Leibler divergence must also be adapted to
the hyperbolic space. According to eq. (3), we only need to
redefine the logarithmic probability density function which
is then given, in Lorentz space, as:

log qφ(z|x(i)) = log p(v(i))−(n−1) log

(
sinh(||u(i)||L)

||u(i)||L

)
(9)

and

log pθ(z) = log p(v
(i)
0 )− (n− 1) log

(
sinh(||u(i)0 ||L)

||u(i)0 ||L

)
,

(10)
where qφ(z|x(i)) and pθ(z) are the wrapped normal distri-
butions. p(v) is the normal distribution in the tangent space
at the origin µ0.

u(i) = exp−1
µ
(i)
φ

(z) is the projection of the hyperbolic em-

bedding z into the tangent space T
µ
(i)
φ

Hn.

v(i) = PT−1
µ0→µ(i)

φ

(u(i)) is the transported vector from the

tangent space T
µ
(i)
φ

Hn to the tangent space at the origin

Tµ0Hn.

u
(i)
0 = exp−1µ0

(z) = PT−1µ0→µ0
(u

(i)
0 ) = v

(i)
0 is the projected

vector of the hyperbolic embedding z in the tangent space
at the origin Tµ0Hn.

3 When H-VAE meets remote sens-
ing scene classification

3.1 Motivation
Remote Sensing scene classification aims at categorizing
aerial or satellite images into a discrete set of meaningful
classes based on the images’ content. Those labels are of-
ten semantic and can been organized hierarchically. For
instance, an image can be classified as freeway, highway or
transportation, depending on the level of details we focus
on. Remote sensing scene classification is a challenging
task; scene images can exhibit confusing visual similar-
ity between different classes, significant intra-class varia-
tion that may even be greater than the inter-class variance
and similar semantic classes may show significant visual
dissimilarity [20]. For instance, although a freeway and a
runway have visual similarities, they are semantically un-
related. In contrast, the runway and the airplane classes



may be visually distinct but semantically similar as they
may both be instances of the Airport class. As such, state-
of-the-art methods do not build on raw pixels but rather
start by defining efficient features to rely on for classifica-
tion task [21]. In this paper, we rely on the VAE that has
been successfully used to extract meaningful features in
that context and perform a classification step on the result-
ing embedding. As the labels are intrisically hierarchical,
we aim in this paper at studying what is the impact of con-
sidering a Hyperbolic Embedding rather than an Euclidean
one. We study two settings: i) are the Hyperbolic VAE
embeddings reflecting the hierarchical organization of the
classes? (as it is done in [7]) ii) when guiding the con-
struction of the embeddings with the taxonomy of classes,
does the hyperbolic space provide a better organization of
the space, and then better classification performances? We
specify that in this study, we consider a simple VAE archi-
tecture to limit its impact on the conclusions.

3.2 Label-driven VAE learning
VAE only considers visual information when learning im-
age embeddings. Here, we detail the incorporation of the
hierarchical class structure into the VAE learning process
so as to supervise and guide the construction of the latent
space Z (see Figure 4). To do this, and following [15, 4],
we use a class hierarchy-based pairwise similarity mea-
surement between images, which aims to bring semanti-
cally similar images closer together and distancing them
from those that are less similar.
We therefore drive the construction of our latent space Z
by optimizing the Soft Local Ranking (SLR) loss defined
as :

LSLR(x(i), T ;φ) =
∑
i,j

log Pr(x(i), x(j);φ),

where

Pr(x(i), x(j);φ) =
e−dl(µ

(i)
φ ,µ

(j)
φ )∑

j′∈N (i,j) e
−dl(µ(i)

φ ,µ
(j′)
φ )

,

(11)

where γ is where µ(i)
φ is the hyperbolic mean of the in-

put image x(i), dl(µ
(i)
φ , µ

(j)
φ ) is the Lorentzian distance be-

tween µ(i)
φ and µ(j)

φ .

N (i, j) is the set of images semantically less similar to x(i)

than x(j) including x(j), which is given by N (i, j) = {j′ :
dT (l(i), l(j

′)) > dT (l(i), l(j))}∪{j} where dT (l(i), l(j)) is
the path-length between l(i) and l(j), labels of images x(i)

and x(j) respectively, in the class hierarchy T .
We then formulate our label-driven VAE for scene image
embedding as:

arg max
φ,θ

(LELBO(x, φ; θ) + γ LSLR(x; T , φ)) , (12)

The first term is the VAE objective which embeds the scene
images based on their visual similarity, while the second
term is the SLR objective detailed above.
The label-driven VAE objective can thus be detailed as:

arg max
φ,θ

(Ez∼qφ(z|x(i))

[
log pθ(x

(i)|z)
]

− β DKL

(
qφ(z|x(i))||pθ(z)

)
+ γ LSLR(x, T ;φ)),

(13)

where x(i) are scene images, φ and θ are VAE parame-
ters, β and γ are the scaling hyperparameters controlling
the weight relative to the KL divergence and SLR during
training.

4 Experimental study
In the following experiments, we evaluate the quality of the
hyperbolic VAE image embedding for the scene classifica-
tion task in both unguided and guided scenarii. We first
introduce a remote sensing scene dataset whose labels are
hierarchically organized. Then, we describe the network
architecture and the parameter settings. Finally, in order
to assess the interest of the hyperbolic embedding in our
context, we compare the classification results based on a
k-nearest neighbor applied on the embeddings provided by
an E-VAE, an H-VAE and a label-driven H-VAE.

4.1 Experimental setup
Dataset and implementation. PatternNet [18] is a high-
resolution remote sensing dataset for scene classification
and retrieval. It contains 30 400 images of 256 × 256 pix-
els with a resolution ranging from 0.062 to 4.693 m per
pixel. The dataset covers 38 classes of scenes, such as an
airplane, baseball field, basketball court, beach, bridge, and
cemetery, that are organized hierarchically [14] and a sub-
tree of the 3-level label tree is depicted in Figure 3.
To investigate the relevance of the hyperbolic geometry for
remote sensing scene classification, we randomly select for
each class 100 images for the training set, 50 images for
the validation set and 80 images for the test set. For all
experiments, we report the average and standard deviations
over three runs. We implemented the described approach
based on [15, 8].

Architecture of the VAE and classification method.
For both the E-VAE and the H-VAE, we choose the same
following architecture. Both the encoder and the decoder
are composed of 5 convolutional layers and a linear layer,
each convolutional layer is followed by a batch normal-
ization layer and a Leaky ReLU activation, except for the
decoder last convolutional layer which is followed by a sig-
moid activation. The input size is set to 64×64. The latent
space dimension d of the embedding z is set to 8, 16, 32,
64 and 128 respectively. Note that this architecture is very
simple compared to the one used in remote sensing [17, 21]
but here we are not looking for high performance.



Figure 3 – Sub-branch of the category tree of the Remote Sensing PatternNet dataset. The leaves correspond to classes, the
length of a single edge is equal to 0.5, and the distance between two given classes can take one of the following values: 0, 1,
2 and 3.
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Figure 4 – Overview of the Hyperbolic VAE for remote sensing image embeddings.

We report the performances of the models for the following
parameter values, as they allowed us to get the best results.
The Adam optimizer [19] acts as our optimizer with a con-
stant learning rate of 1e−3. The models are trained with
mini-batches of size 64 for 350 epochs, an early stopping
of 50 epochs and m = 10 negative samples to optimize
the SLR term. The ELBO term is approximated by Monte
Carlo (MC) estimation withK = 1. β and γ scaling hyper-
parameters weights of the KL divergence and the SLR loss
were chosen experimentally and set to 5e−5 and 1e−3 re-
spectively. For classification, we adopt, without any loss of
generality, the k-Nearest Neighbors (k-NN) classifier with
k set to 1.

Evaluation metrics. We consider two different evalua-
tion metrics to assess the quality of the VAE embeddings.
The first one is the classification accuracy computed at each

level of the hierarchy (except at the root). The second one
is a distance-based metric that measure the coherency of
the classes w.r.t. the hierarchy, which is an adaptation of
the mAD@k (mean Average Deviation at cutoff k) metric
proposed for scene retrieval evaluation in [14]. This met-
ric measures, for the misclassified samples, how far they
are from the actual class considering a distance computed
on the label tree (the smaller the better). It is defined as
follows:

mAD =

{
0, if |N | = 0;

1
|N |
∑|N |
i=1 dT (l(i), pl(i)) otherwise,

(14)

where N is the set of misclassified labels, |N | is the num-
ber of misclassified labels, l(i) and pl(i) are the true and the
predicted labels, respectively. dT (i, j) is the path-length
between labels i and j in the class hierarchy T ; the path-
length between two classes is defined as the total edge



weight (a single edge is equal to 0.5) of the path between
the two associated leaves and can take one of the following
values: 0, 1, 2 and 3.

4.2 Results

Table 1 reports the classification accuracy at different levels
of the PatternNet class hierarchy.

When comparing E-VAE and H-VAE, we observe that E-
VAE outperforms H-VAE in terms of classification accu-
racy across different levels and dimensions. In opposite
to what was observed in several papers in the literature
[7, 8, 15], H-VAE does not provide a latent space that better
reflects the label’s hierarchy than E-VAE. While the perfor-
mances of E-VAE increase or remain stable with the latent
space dimension, we surprinsingly observe that the H-VAE
gets worst performances for dimension greater than 32. We
conjecture that this is due to the numerical instability of the
hyperbolic space which was observed in [22] but this re-
quires a further investigation. Guiding the H-VAE learning
with the SLR term improves the performance of H-VAE
but still with scores lower than the (un-guided) E-VAE. In-
terestingly enough, it avoids the degradated performances
when increasing the dimension of the latent space.

We now study how the misclassified images are organized
w.r.t. the label’s hierarchy. Table 2 gives the mAD per-
formance. Again, we observe that E-VAE outperforms H-
VAE. We also note that the performances drop when the
dimension increases. Nevertheless, when guiding the la-
tent space, one can note that it has similar or sometimes
better performances that the E-VAE.

5 Conclusion

Hyperbolic embeddings have captured the attention of the
machine learning community thanks to their ability to
represent more efficiently hierarchically-structured data,
showing better results than Euclidean embeddings in many
domains. In this work, we investigate, for the first time,
the ability of hyperbolic spaces in a remote sensing scene
classification context, in which scene semantic labels have
an intrinsic hierarchical structure. We first performed a
feature extraction step, considering a Variational Auto-
encoder, to embed the scene images, and drove the learn-
ing of the latent space such that it fits the label’s hierarchy.
Evaluating the hyperbolic latent space in a classification
context, we did not highlight the advantages of these hy-
perbolic spaces over Euclidean ones.

In future works, we plan to investigate the use of more
complex architectures in order to define more efficient fea-
tures to describe the scenes. Indeed, in remote sensing,
deep networks such as VGG, AlexNet, ResNet are gener-
ally used for image feature extraction [17]. We also plan to
define dedicated loss functions that bring out the hierarchi-
cal aspect of the data more efficiently.

Acknowledgement
This work was supported by the ANR Multiscale project
under the reference ANR-18-CE23-0022.

References
[1] M. M. Bronstein, J. Bruna, Y. LeCun, A.Szlam, & P.

Vandergheynst, Geometric deep learning: going be-
yond euclidean data, IEEE Signal Processing Maga-
zine, vol. 34, pp. 18-42, 2017.

[2] F.Sala, C.De Sa, A. Gu, & C. Ré, Representation trade-
offs for hyperbolic embeddings, International Confer-
ence on Machine Learning (ICML), pp. 4460-4469,
2018.

[3] M. Nickel, & D. Kiela, Poincaré embeddings for learn-
ing hierarchical representations, Neural Information
Processing Systems (NeurIPS), vol. 30, pp. 6338-6347,
2017.

[4] M. Nickel, & D. Kiela, Learning continuous hierar-
chies in the lorentz model of hyperbolic geometry,
PMLR. International Conference on Machine Learn-
ing (ICML), vol. 80, pp. 3779-3788, 2018.

[5] H. Cho, B. DeMeo, J. Peng, & B. Berger, Large-
Margin Classification in Hyperbolic Space, Interna-
tional Conference on Artificial Intelligence and Statis-
tics (AISTATS), pp. 1832-1840, 2019.

[6] O. E. Ganea, G. Bécigneul, & T.Hofmann, Hyperbolic
neural networks, Neural Information Processing Sys-
tems (NeurIPS), vol. 31, pp. 5350–5360, 2018.

[7] E. Mathieu, C. L. Lan, C. J. Maddison, R.Tomioka,
& Y. W. Teh, Continuous Hierarchical Representations
with Poincaré Variational Auto-Encoders, Neural In-
formation Processing Systems (NeurIPS), vol. 32, pp.
12544-12555, 2019.

[8] Y. Nagano, S. Yamaguchi, Y.Fujita, & M. Koyama, A
wrapped normal distribution on hyperbolic space for
gradient-based learning, International Conference on
Machine Learning (ICML), pp. 4693-4702, 2019.

[9] Y. Cui, L. Chapel, & S. Lefèvre, A subpath kernel for
learning hierarchical image representations, Interna-
tional Workshop on Graph-Based Representations in
Pattern Recognition, pp. 34-43, 2015.

[10] A.Tifrea, G. Bécigneul, & O. E. Ganea, Poincaré
GloVe: Hyperbolic Word Embeddings, International
Conference on Learning Representations (ICLR),
2019.

[11] N. Monath, M. Zaheer, D. Silva, A. McCallum, &
A. Ahmed, Gradient-based hierarchical clustering us-
ing continuous representations of trees in hyperbolic
space, International Conference on Knowledge Dis-
covery & Data Mining (KDD), pp. 714-722, 2019.



Geometry Hierarchy
Level

Latent Space Dimension d
8 16 32 64 128

VAE

E-VAE
Level 4 13.23± 0.7 17.62± 0.6 20.03± 0.2 19.09± 0.5 17.64± 0.5

Level 3 19.56± 1.2 23.25± 0.6 25.38± 0.4 24.10± 0.3 22.52± 0.5

Level 2 31.40± 0.7 35.34± 0.5 37.59± 0.4 37.39± 0.4 37.18± 0.2

H-VAE
Level 4 10.05± 0.4 10.99± 0.5 10.67± 2.8 7.97± 1.1 7.05± 1.2

Level 3 16.73± 0.4 17.43± 0.1 13.66± 4.5 11.54± 3.0 9.17± 2.6

Level 2 29.32± 0.4 30.38± 1.8 24.02± 10.3 19.40± 7.9 16.82± 7.4

VAE+SLR H-VAE
Level 4 11.99± 1.1 14.23± 0.6 15.21± 0.5 11.73± 1.3 10.06± 0.5

Level 3 18.04± 1.3 20.76± 0.6 20.34± 0.6 17.21± 1.8 17.30± 0.6

Level 2 29.81± 1.7 33.68± 0.8 35.93± 1.0 35.82± 1.9 35.15± 0.7

Table 1 – 1-NN classification accuracy of different VAE models on the PatternNet dataset (the higher the better) at different
levels of the class hierarchy; level 4 represents the leaves of the hierarchy and thus the PatternNet classes. Results are
averaged over 3 runs.

Geometry Latent Space Dimension
8 16 32 64 128

VAE E-VAE 2.72± 0.01 2.72± 0.01 2.71± 0.01 2.71± 0.01 2.70± 0.01

H-VAE 2.71± 0.01 2.71± 0.01 2.82± 0.11 2.84± 0.10 2.87± 0.08

VAE+SLR H-VAE 2.72± 0.01 2.70± 0.01 2.70± 0.02 2.67± 0.02 2.64± 0.01

Table 2 – Values of mAD on PatternNet dataset (the smaller the better). Results are averaged over 3 runs.

[12] V. Khrulkov, L. Mirvakhabova, E. Ustinova,
I.Oseledets, & V. Lempitsky, Hyperbolic image em-
beddings, IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6418-6428,
2020.

[13] A. Dhall, A. Makarova, O. Ganea, D. Pavllo, M.
Greeff, & A. Krause, Hierarchical image classification
using entailment cone embeddings, IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 836-837, 2020.

[14] Y. Liu, Y. Liu, C. Chen, & L. Ding, Remote-
sensing image retrieval with tree-triplet-classification
networks, Neurocomputing, vol. 405, pp. 48-61, 2020.

[15] K. Yu, S. Visweswaran, & K. Batmanghelich, Semi-
supervised hierarchical drug embedding in hyperbolic
space, Journal of Chemical Information and Modeling,
vol. 60, pp. 5647-5657, 2020.

[16] D. P. Kingma, & M. Welling, Auto-Encoding Vari-
ational Bayes, International Conference on Learning
Representations (ICLR), 2014.

[17] G. Cheng, J. Han, & X. Lu, Remote sensing im-
age scene classification: Benchmark and state of the
art, Proceedings of the IEEE, vol. 105, pp. 1865-1883.
2017.

[18] W. Zhou, S. Newsam, C. Li, & Z. Shao, PatternNet:
A benchmark dataset for performance evaluation of re-
mote sensing image retrieval, ISPRS journal of pho-
togrammetry and remote sensing, vol. 145, pp. 197-
209, 2018.

[19] D. P. Kingma and J. Ba, Adam: A Method for
Stochastic Optimization, International Conference on
Learning Representations (ICLR), 2016.

[20] X. Yu, X. Wu, C. Luo, & P. Ren, Deep learning in
remote sensing scene classification: a data augmen-
tation enhanced convolutional neural network frame-
work, GIScience & Remote Sensing vol. 54, pp. 741-
758, 2017.

[21] G. Cheng, X. Xie, J. Han, L. Guo and G. S. Xia,
Remote sensing image scene classification meets deep
learning: Challenges, methods, benchmarks, and op-
portunities, IEEE JSTARS, 13, pp.3735-3756, 2020.

[22] T. Yu, & C. De Sa, Numerically accurate hyperbolic
embeddings using tiling-based models, Neural Infor-
mation Processing Systems (NeurIPS), pp. 2021–2031,
2019.


